Archive for the ‘wireless’ Category

The Mobile Node – A Missing Isssue in the Positive Train Control Debate

The Illusive Mobile Node

Is it politics or perspective that is causing the PTC debate to derail?

As discussed  in the Last Mile posting,  US railroads are still failing to take on the strategy of incorporating the advanced business applications that can be achieved with the wireless data path required to support Positive Train Control (PTC) so as to most effectively manage their resources.

Specifically, the voice radio and signaling infrastructures that are currently depended upon to provide train status data to the traffic control systems, are unable to deliver the timeliness and completeness as to both location and speed data for trains so as to permit the use of meet /pass planners that could optimize the railroads’ most dense and most critical operations.  Therefore, this primal infrastructure needs to be advanced, and to do so effectively requires a perspective that integrates the three principle technology platforms (communications, positioning, and intelligence) to form a strategic core technology infrastructure. In this post, I address intelligence, i.e., the processing power for applications, of such an infrastructure. The other two platforms will be addressed in following postings.

With the shift from the mainframe of the 60’s to that of client / server of today, intelligence has made the transition from being only centralized to that of being distributed with seamless flexibility between the two, at least for those industries whose distributed resources are fixed as to location. For these fixed node operations, the challenges for distributing intelligence tend to be less technical and more functional as how to optimally allocate the processing power across a mesh of private and commercial networks, internet, and back office systems.  But, what about railroads where the assets are mobile and, even worse, where those assets traverse across railroad boundaries? This convoluted concoction of mobility and interoperability adds new dimensions to distributed intelligence far beyond those of fixed node, thereby necessitating a mobile node perspective with philosophical, technical, and functional considerations garnished with industry politics.

From a philosophical standpoint, the mobile node should be viewed as an extension to the IT architecture, meaning that the discipline and expertise well established in the traditional wired-IT environment should be imposed upon mastering the wild west of wireless. In short, this means that railroads and suppliers alike need to coalesce wireless and IT expertise into a dedicated Mobile Computing organization in lieu of the parallel lines on an organization chart that are too often the case today.

As to a functional perspective, the deployment of mobile nodes offers the extraordinary opportunity to rethink business processes that can take advantage of unprecedented connectivity and the timeliness and accuracy of position and speed data that wireless data afford (think UPS or Fed Ex).  For some this may be extraordinarily uncomfortable when they are confronted with revisiting the functionality of their traditional back office systems, e.g., how would train dispatching be done with train speed and location data available every 5 minutes?

Unlike the fixed node, the mobile node is technically challenged by both the constraints of the communication medium and the physical environment in which it operates as well as the requirements of interoperability. As to communications, the mobile node must be able to strut its independence given that the wireless throughput is relatively limited and unreliable compared to a fixed node’s wired throughput. As to the physical environment, what could be worse than the cab of a locomotive or a maintenance-of-way vehicle? For this challenge I subscribe to the screwdriver-penetration test, a railroad’s version of Psycho’s shower scene applied to on-board equipment.

Given the extensive interchange of trains between railroads in North America and the EU, there is often the issue of  interoperability, i.e., the ability of foreign equipment to provide the desired functionality on a railroad’s property. There are only a few applications that have been recognized for this intra-industry pursuit. Unquestionably, the most important for this discussion is that of Positive Train Control (PTC) which has been mandated by the US Federal government for implementation across the major freight and passenger railroads before 2016.  With an unprecedented level of cooperation, it would seem to many, that the primary 4 Class I railroads in the U.S, via a joint effort referred to as the Interoperability Train Control (ITC) agreement, are working on all aspects of interoperability to meet the deadline.  The ITC efforts are being handled by 7 technical committees:  Architecture, PTC Application, Wayside Signal, Messaging, On-board Platform, Communications Steering, and Data Management.  The standards that come out of these committees are to be available by January 2011.

However, there are still 2 major points to consider. The first is that the effort does not have any purpose other than that of PTC. While many railroaders and suppliers will state the business benefits of PTC, they fail to recognize the foolishness of their own hype. Simply stated, it is the wireless path now required for the mandate PTC effort that will finally deliver business benefits not PTC itself; PTC is just one user of the wireless data infrastructure.  BUT, the ITC efforts are not providing a business perspective of the on-board platform that would deliver a true mobile node perspective that could handle not only PTC, but also  support business-value applications such as pacing, locomotive tracking, fuel consumption, in-train monitoring, etc.

There is also another reason that the ITC efforts are less than complete, certainly not altruistic, if not a bit misleading; it is the issue of industry politics. That is, each major railroad came to the ITC table with a very different technology agenda. There are solutions to address these differences, and the railroads more than ever are working in that direction. However, I believe the solution to develop a single technology platform is poorly evaluated as to both scope and costs, while other wireless spectrums are being very poorly utilized, i.e., Meteorcomm and narrowband 160-161 MHz … clearly a discussion for a forthcoming post.

As discussed in the Last Mile posting, the railroads are still failing to take on the strategy of incorporating the advanced business applications that can be achieved with the wireless data path required to support Positive Train Control (PTC) so as to most effectively manage their resources. Specifically, the voice radio and signaling infrastructures that are currently depended upon to provide train status data to the traffic control systems, are unable to deliver the timeliness and completeness as to both location and speed data for trains so as to permit the use of meet /pass planners that could optimize the railroads’ most dense and most critical operations. Therefore, this primal infrastructure needs to be advanced, and to do so effectively requires a perspective that integrates the three principle technology platforms (communications, positioning, and intelligence) to form a strategic core technology infrastructure. In this posting, I address intelligence, i.e., the processing power for applications, of such an infrastructure. The other two platforms will be addressed in following postings.

With the shift from the mainframe of the 60’s to that of client / server of today, intelligence has made the transition from being only centralized to that of being distributed with seamless flexibility between the two, at least for those industries whose distributed resources are fixed as to location. For these fixed node operations, the challenges for distributing intelligence tend to be less technical and more functional as how to optimally allocate the processing power across a mesh of private and commercial networks, internet, and back office systems. But, what about railroads where the assets are mobile and, even worse, where those assets traverse across railroad boundaries? This convoluted concoction of mobility and interoperability adds new dimensions to distributed intelligence far beyond those of fixed node, thereby necessitating a mobile node perspective with philosophical, technical, and functional considerations garnished with industry politics.

From a philosophical standpoint, the mobile node should be viewed as an extension to the IT architecture, meaning that the discipline and expertise well established in the traditional wired-IT environment should be imposed upon mastering the wild west of wireless. In short, this means that railroads and suppliers alike need to coalesce wireless and IT expertise into a dedicated Mobile Computing organization in lieu of the parallel lines on an organization chart that are too often the case today.

As to a functional perspective, the deployment of mobile nodes offers the extraordinary opportunity to rethink business processes that can take advantage of unprecedented connectivity and the timeliness and accuracy of position and speed data that wireless data afford (think UPS or Fed Ex). For some this may be extraordinarily uncomfortable when they are confronted with revisiting the functionality of their traditional back office systems, e.g., how would train dispatching be done with train speed and location data available every 5 minutes?

Unlike the fixed node, the mobile node is technically challenged by both the constraints of the communication medium and the physical environment in which it operates as well as the requirements of interoperability. As to communications, the mobile node must be able to strut its independence given that the wireless throughput is relatively limited and unreliable compared to a fixed node’s wired throughput. As to the physical environment, what could be worst than the cab of a locomotive or a maintenance-of-way vehicle? For this challenge I subscribe to the screwdriver-penetration test, a railroad’s version of Psycho’s shower scene relative to on-board equipment.

Given the extensive interchange of trains between railroads, there is often the issue of interoperability, i.e., the ability of foreign equipment to provide the desired functionality on a railroad’s property. There have been only a few applications that have been recognized for this intra-industry pursuit. Unquestionably, the most important for this discussion is that of Positive Train Control (PTC) which has been mandated by the Federal government for implementation across the major freight and passenger railroads before 2016. With an unprecedented level of cooperation, it would seem to many, that the primary 4 Class I railroads in the U.S, via a joint effort referred to as the Interoperability Train Control (ITC) agreement, are working on all aspects of interoperability to meet the deadline. The ITC efforts are being handled by 7 technical committees: Architecture, PTC Application, Wayside Signal, Messaging, On-board Platform, Communications Steering, and Data Management. The standards that come out of these committees are to be available by January, 2011.

Given the ITC efforts, there are still 2 major points to consider. The first primary point is that the effort does not have any purpose other than that of PTC. While many railroaders and suppliers will state the business benefits of PTC, they fail to recognize the foolishness of their own hype. Simply stated, it is the wireless path now required for the mandate PTC effort that will finally deliver business benefits; PTC is just one user of the wireless data infrastructure. BUT, the ITC efforts are not providing a business perspective of the on-board platform that would in effect deliver a true mobile node perspective that could handle not only PTC, but also support business-value applications such as pacing, locomotive tracking, fuel consumption, in-train monitoring, etc.

There is also another reason that the ITC efforts are less than complete, certainly not altruistic, if not a bit misleading; it is the issue of industry politics. That is, each major railroad came to the ITC table with a very different technology agenda. There are solutions to address these differences, and the railroads more than ever are working in that direction. However, I believe the solution to develop a single technology platform is poorly evaluated as to both scope and costs, while other wireless spectrums are being very poorly utilized, i.e., Meteorcomm and narrowband 160-161 MHz … clearly a discussion for a forthcoming posting.

The Last Mile – the 80/20 productivity gain the railroads are missing

As of two years ago, the advancement in railroad operations had stalled at the end of the wire, literally. While railroads have invested heavily in the backbone communication and signaling infrastructures that define the perimeter of their IT and traffic control architectures, the primary assets that need to be managed (trains, crews, locomotives, maintenance crews) operate beyond the reach of those tentacles.

Unfortunately, railroads continue to rely on track circuits and voice radio for managing trains and thereby the locomotives, train crews, and yard utilization. Accordingly, the back-office dispatching systems are so geared to provide a level of traffic management that can no longer service the railroads’ markets during peak periods. The net effect of such inefficiency is two-fold: 1. railroads have turned away (or lost) business during peak market periods, and 2. railroads are paying a severe price to obtain and maintain excessive resources, e.g., locomotives and crews.

Suddenly and unexpectedly in 2008, the Congressional mandate for Positive Train Control (PTC) in the Rail Safety Improvement Act of 2008 delivered the requirement for the railroads to advance wireless data networks, both individually and as an industry.

Suddenly, there was some hope by the few progressives in the industry that the PTC mandate would lead to a broad understanding of what the required wireless data infrastructure could do for rail operations.

Shortly thereafter, but not surprisingly, all such hopes were dashed as the railroad technicians sunk their teeth into this new opportunity to provide a new, most advanced, extremely tailored wireless data platform that could be envied by all and do all …but without any desire, recognition, or management directive to consider other than PTC.

Shamefully, this wasn’t the first mandate from the Feds that could have led to a revitalization of a railroad’s operations via wireless. The FCC had issued a Point & Order referred to as Narrowbanding that effectively requires the railroads to replace their extensive 160-161 MHz infrastructure consisting of 250,000 analog devices with digital equivalents by January 1, 2013. However, this requirement has been viewed  by the railroad technicians as a technology investment issue and not as an opportunity to advance operations.

Amazingly, after two extraordinary opportunities to advance railroad operations with an advanced wireless platform that required no justification other than a Federal mandate, there is still no real focus on the Last Mile as to optimizing the capacity and productivity.

The phrase Last Mile is not a new one for some industries where it has been  used to describe alternatives to deliver cable services in the 1990’s as well as to providing communication infrastructures in developing countries, and most recently to define new markets for advancing mobile services.  The phrase is also used to define the delivery of goods that is beyond the railroads’ physical infrastructure and that is provided by trucking firms. In this latter case, the intermodal industry has emerged as a seemingly seamless transportation offering the combination of rail, trucking, and maritime. Taking that approach to the last mile relative to a railroad managing its own resources is directly comparable, i.e., developing and merging the necessary technologies into a seamless technology platform that I refer to as the core technology infrastructure.

Simply described, the core technology infrastructure is the integration of communication, positioning, and intelligence technologies that supports the basis of a railroad’s operations. Today, that infrastructure is a ménage of voice radio and backbone networks as to communications, track circuits for positioning, and control points enslaved by CTC systems for intelligence. This infrastructure provides a level of block positioning data, but without train speed, that constrains the effectiveness of managing traffic to that of being reactive to conflicts in the meeting and passing of trains. With improved timeliness and accuracy in both train position and speed information, the railroads can achieve an advanced operating practice of  Proactive Traffic Management (PTM) that I introduced to the industry in 2005.

PTM is the ability to see the future state of a railroad’s operations so as to provide solutions to minimize, if not avoid, foreseen traffic conflicts. It does so by projecting the current status of trains by feeding both timely and accurate train position and speed data to sophisticated meet / pass planners aligned with a railroad’s operating objectives. For traffic management, the frequency of such data is dependent upon traffic density and the type of traffic control.  To be brief here, that means the reporting frequency of position and speed data ranging from 5 to 15 minutes in addition to AEI and CTC’s on-station (OS) reports. This is what I refer to as in-time data.

To obtain in-time data requires a strategic perspective of the core technology infrastructure, a perspective that needs to be both evolutionary and revolutionary. As to the former, the railroads should be able to leverage their current, massive communications infrastructure to obtain the level of in-time data required. The most obvious opportunity here is the conversion of the  current analog, voice-based VHF infrastructure to a digital, data-based one … justified by the rational understanding that by doing so the railroads could avoid the $1 billion investment in the 220 MHz platform for PTC. As to a revolutionary perspective, obtaining PTM will mean making significant changes in the traffic control processes that stem from the 1st qtr of the last century. Such changes are supported by integrating advanced communication, positioning, and intelligence technologies that have yet to successfully storm the innovation barricades of both the railroads’ and traditional suppliers’ engineering departments. A critical design point in developing a strategic core technology infrastructure is to not fall for the fallacy of  zero tolerance – 100% efficiency,  to not drive towards unrealistic, if even achievable, goals such as moving block dependent upon real-time data.

To do the Last Mile requires a strategic technology plan in sync with a strategic operations plan. It requires Strategic Railroading.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop