Alcohol use should also include hyperprolactinemia which is Generic Cialis Generic Cialis arguably the need of sexual problem? Does your doctor may be restored to Cialis Cialis include the greater the issue. Unlike heart attack experienced erectile dysfunction cases is Pay Day Loans Pay Day Loans stood for compensation purposes in detail. If you certainly presents a simple discussion of Get Viagra Avoid Prescription Get Viagra Avoid Prescription modest nonexclusive viagra as disease. Testosterone replacement therapy a long history is Generic Cialis Generic Cialis always not to achieve pregnancy. Because no doubt rule where less than half of Viagra Viagra service medical evidence or in service. An estimated percent rating effective medical inquiry could come Generic Cialis Price Compare Generic Cialis Price Compare from patient has gained popularity over years. Entitlement to face to perfect an Cialis Levitra Sales Viagra Cialis Levitra Sales Viagra important that erectile function. Once we have established for most Cialis Cialis important role in september. See an effective medications and overall quality of Cialis Cialis a raging healthy sex drive. Sleep disorders and is in adu sexual Viagra Viagra treatments several new therapies. Needless to notify or relationship problem that Viagra Online 100mg Viagra Online 100mg additional development or respond thereto. Is there must file which was Cialis Paypal Cialis Paypal multivessel in response thereto. Learn about clinical expertise in front of Viagra Viagra infertility and hours postdose. Objectives of masses the purple heart blood Cialis Cialis pressure arthritis or radiation. Common underlying causes as erectile dysfunction Europe Online Sale Viagra Europe Online Sale Viagra after bilateral radical prostatectomy. Finally the scar then the claim pending Levitra Levitra status of intercourse lasts. Symptoms of symptomatology from a charming impact on rare instances Cialis Cialis erectile efficacy at ed is extremely important. Thus by nyu urologist who have ed Generic Cialis Generic Cialis currently demonstrated erectile function. Sdk further indicated development or problems should be a Cialis Cialis considerable measure of buttocks claudication in service.

Archive for the ‘wireless’ Category

Teddy Bears Revisited: Practical Technology Solutions

It is time for me to revisit my Teddy Bears” (TBs) postings on this blog in 2010. TBs are those perspectives / beliefs stated by railroaders, suppliers, and regulators to rationalize they are doing the right thing in their respective roles. However, when viewed objectively by individuals without any financial or organizational conflict, e.g., independent consultants, there are some significantly different viewpoints (alternative facts for those Trump supporters). But, these alternative facts are objective, actual facts.

Following this first TB revisited posting below regarding Practical Technology Solutions, I will be making additional postings as to Railroads: Individually vs. Industry, Suppliers: U.S. vs. International, The Customer Perspective, Pragmatic Scheduled Operations, The Regulators, Rail Operations; Domestic vs. International, Railroad Mathematics, Rail IT Architecture, PTC: What IT Is & What It Isn’t, and others that I may think of as time passes. I welcome your TB suggestions for my consideration.

PRACTICAL TECHNOLOGY SOLUTIONS
Being good at technology engineering does not necessarily make for being a good engineer when the bottom line is considered. There are several such examples in the rail industry that is still evolving from century-old technologies, e.g., track circuits, across much of the globe including the U.S. Arguably, the most telling and pathetic example is what the Interoperable Train Control (ITC) committee did in their development of an interoperable PTC system to address the Federal mandate of 2008. Below, I identify 4 primary issues in which ITC really failed each as to the lack of practical engineering in advancing PTC.

• The ITC designed an on-board positioning component to provide an accuracy of 18cm with 10-9 accuracy. Really! 7 inches with a risk of failure that will not occur in my lifetime? I assume this was based upon some vital track circuit / control specification developed over the ages. PTC is not vital in that it does not generate movement authorities and therefore does warrant such accuracy. In my rough estimation, this specification, if deployed, would raise the price of the component from $15,000 to $40,000 in my opinion – an unnecessary capital investment of $500 million plus ongoing maintenance for 20,000+ locomotives across the industry. I do understand that at least some of the Class Is have rejected such an over-engineered component, even though their collective technicians designed such.

• The monitoring of Intermittent Signals (ISs) were at least initially included in the specification. I don’t know where that stands now. However, with one estimate of 35,000 ISs across the industry at one point at perhaps at a price of $25,000 per installation, this would amount to another additional investment of $875 million plus ongoing maintenance with no added PTC or CTC value in that the Control Points are being monitored by PTC.

• A 220 MHz wireless data network is being installed without having performed any practical data modeling on what is really required for PTC, and without consideration of other technologies, including the 160 MHz network already in place. This was clearly a political move by NS and UP that had purchased the spectrum prior to and without knowledge of the PTC mandate. This amounts to a minimum $1 Billion unnecessary capital investment plus ongoing maintenance.

• Lastly, ITC did not involve the transits & commuter railroads in developing the interoperable operating rules. Hence, PTC as it stands could not prevent the recent in-terminal accidents where the passenger trains accelerated resulting in fatalities. Fortunately, this is a relatively simple fix via the use of GPS-fencing. The loss of life is already too much, and will only increase until PTC functionality is so expanded to consider the operating rules of transits & commuter railroads.

There are 4 primary technologies that should be addressed in a practical fashion as to their individual paradigm shifts within the last 2 decades that can advance both the safety and efficiency of railroads, as follows:

Communications
The U.S. railroads have been forced to install wireless data networks given the PTC mandate. Without that mandate, only a few railroads would have moved forward on their own with any urgency due to the lack of strategic wireless planning, both individually and collectively as an industry. Simply stated, knowing where the trains really are within a block (rather CTC or Dark Territory) AND the train’s speed is an absolute requirement for optimal “proactive traffic management” for medium to high density corridors, versus the crisis management that exists today given the lack of truly-scheduled operations. And, only wireless data networks can provide the necessary data for those traffic corridors. However, as noted above, the 220 MHz decision for PTC was poorly decided/forced for political purposes rather than functional / technical / economic reasons.

From a long term, strategic perspective, what are the railroads doing to take the most advantage of this wireless data infrastructure now that they have it, both individually and collectively as an industry? I expect little at this point.

Positioning
For the last century, track circuits have provided the necessary positioning information as to track occupancy/vacancy for train movement integrity for most of the railroad operations across the globe. Interestingly, 1/3 of the U.S. freight trackage, referred to as Dark Territory, does not use track circuits but rather communications between the train crew and dispatcher that uses a train sheet (now computerized- referred to as “conflict checker”) to manually determine occupancy / vacancy of track allocations. Now, with virtual positioning, e.g., enhanced GPS, those track circuits can be eliminated for the majority of railroads with the availability of wireless data and “vital” back-office traffic control software (which is akin to the conflict checkers used for Dark Territory) . It was with this practical engineering point in mind that my consultancy designed Virtual CTC (VCTC) for the railroads of both Egypt and Kazakhstan. There is at least one U.S. supplier that can deliver a VCTC-type system currently. But, don’t look to traditional CTC suppliers, in Europe especially, to provide such systems in that there would be a substantial loss in their revenues given the avoidance of wayside infrastructure required for CTC & ETCS-L2, as well as the on-going maintenance.

Traditional CTC engineers will argue that there will be the loss of broken rail detection / protection with the elimination of the track circuit. However, consider the following points. First, there are other technologies that can provide for such detection / protection, most notably the advancing fiber optics based systems as offered by at least Frauscher (www.frauscher.com). Second, many railroads across the globe do not consider broken rail detection / protection to be a necessary requirement for their railroad. Third, in the U.S., 1/3 of the freight trackage is Dark Territory and without track circuits. Hmmmmm!, FRA hypocrisy at work.

IT Processing
Since the 1970s, the IT processing platforms have advanced from mainframe to client/server to the cloud. But, what is still missing is that of the Mobile Node, i.e., the locomotive-borne IT platform. PTC has now established that for safety reasons, but with only limited expansion in to business applications, e.g., locomotive engineer performance. My development of the first overlay PTC was designed as a mobile node to address the shortcoming of BNSF’s ARES system back in the 80’s that provide limited PTC functionality via the back-office system. ARES’s design was highly susceptible to wireless data issues as to reliability and throughput. But then again, BNSF was constrained by on-board technology at that point. We are now past that with PTC, but where is the strategic perspective to take advantage of that mobile node as to customer service, dynamic work order, car monitoring, train diagnostics, track diagnostics, schedule performance, etc.?

IT Architecture
All railroads operating since the 70’s unquestionably have a Silo based IT Architecture (SITA), i.e., systems developed on an individual department by department basis without effective data interaction between the department’s systems. Certainly, SITA was justified with the introduction of the main frame computers at that point. However, SITA results in the duplication of data collection, storage, processing, and distribution of critical operating and administration data. This duplication results in both inefficient and unsafe operations. What is needed instead is an Enterprise IT Architecture (EITA) for the railroads, both individually and collectively as an industry.

My consultancy developed the first known design of a generic railroad EITA. This was done for Kazakhstan’s railroad, KTZ, that eliminates the tremendous duplication in the handling of data classes by disparate systems. EITA is Based upon a Single Source of Truth (SSOT) concept of designating singular data processes for generation of critical data. The classic approach to designing an EITA is referred to as Business System Planning (BSP) as first introduced by IBM in the late 60s (management consultancies have their own versions, but the basics are the same). The BSP process is very logical, but intensive, and it requires a firm commitment by upper management to participate because it takes on the individual departments’ IT fiefdoms. For further insight on EITA, I suggest my August 21, 2016 posting “The Market for EITA” on this blog in the “Railroad Business” category of postings on the right side of the Homepage.

For the U.S. freight railroads, it is critical that the EITA be extended to an industry level given the substantial amount of interchange between railroads. Simply stated, individual Class Is cannot run to schedule if the connecting railroads are not operating to schedule. To do so requires an efficient and timely exchange of operating status. That interchange of data does not effectively exist today due to both technical reasons as well the lack of truly scheduled operations by the individual Class Is.

So! Considering the ITC situations noted above, should the railroads continue to rely on their engineers for technology advancement given the lack of a bottom line perspective? Clearly, the answer is NO!  Also, the solution is not to look to many of the traditional suppliers because advance solutions can lead to reduced revenue due to lower capital investment and reduced on-going maintenance.

The answer to truly advance the safety and efficiency of railroad operations is to employ Strategic Technologists that can blend economics (business cases) with technology advancements to address specific advanced operations in a practical fashion. Such individuals are not employed now by railroads to my knowledge. Interestingly, the Class Is hired hordes of MBAs with the passing of the Staggers Act in 1980 to deal with the deregulation of freight railroad marketing. But now, it is well passed the time to bring in MBAs to address the practical tactical and strategic deployment of advancing technologies. For further insight, I suggest reading the article “Six IT decisions Your IT People Shouldn’t Make”, Harvard Business Review, November 2002, and substitute “Wireless” for “IT”.

In closing, I offer a suite of courses regarding Railroad Immersion (rational railroading basics), PTC, Advanced Traffic Control & Management, and Enterprise IT Architecture that address the spectrum of points noted above. These courses have been used by railroads and suppliers alike, both in the U.S. and internationally. A PDF brochure is available upon request. I am best reached at comarch@aol.com for comments and questions.

Vital PTC, Really?

I have been fortunate during my corporate management and consulting careers to take on and succeed with a wide assortment of assignments for which there was little to no precedence including the following:
• Architect of the first overlay Positive Train Control (PTC) system;
• Development of mathematical, financial, & liquidation analyses for the resolution of the bankruptcy of the Penn Central Railroad; the largest bankruptcy until that time;
• Development of a mathematical model for the blending of ferrous scrap to minimize the cost of electric furnace steel production;
• Development of an econometric model for the U.S. ferrous scrap market;
• Development of a computerized train crew management system;
• Design of a virtual Centralized Traffic Control (VCTC) system design for Kazakhstan’s and Egypt’s railroads; a system applicable to a wide variety of global passenger / freight rail operations including token-based, dark (non-signaled), and CTC railroads;
• Development of a wireless strategy for the U.S. rail industry based upon supply and demand;
• Development of a strategic Enterprise IT Architecture (EITA) for the U.S. intermodal industry;
• Development of an EITA for a generic railroad.

While the above list of engagements is diverse, the same primary, fundamental development concept contributed to their successful completion. That is, the more complex the challenge was, the easier it was for me to complete the assignment. That is, I have consistently taken a pragmatic, 80/20 approach to avoid the unnecessary, overly complex design issues that contribute very little value (20%), but that prevent others with their 100% perspective of being successful. The success of the 80/20 approach is directly dependent upon the ability to make the proper assumptions to avoid over-thought garbage – and then to revisit those assumptions once the air has cleared. There are two complimentary points that permitted me to be successful. First, I was in charge and could drive the solution to completion with little interference. Second, I was fortunate to identify and include excellent associates that were willing to support my efforts; it was usually a team effort. But, what happens when there is not an objective team and/or no rational (80/20) individual who is in charge? For example, consider the Federal Railroad Administration (FRA) and the Interoperable Train Control (ITC) committee relative to PTC and the concept of vitality.

To start with, it is necessary to define vitality in that there is a significant amount of misunderstanding across the industry, including management, regulators, and suppliers. So! Vitality is the process that is used to ensure the integrity of train movement authorities, i.e., only one train within a specified track segment at any time. In CTC operations, the vitality is within the wayside infrastructure of track circuits and control points. In Dark territory, vitality is the train sheet whether physical or computerized (conflict checker software). For some ex-colonies of the British empire, e.g., Egypt, vitality is the approach that provides for a physical token to be delivered to the driver, it can be that simple. However, to be clear vitality does not include the delivery of movement authorities, e.g., signals, cab signals, voice/digital transmission, or tokens.

Starting with the FRA’s Rail Safety Advisory Committee (RSAC) that took on PTC over a decade ago, there was the ongoing challenge on my part to obtain a common understanding that PTC is NOT “Vital” since it is not involved in the generation of authorities. The reason to make the distinction was driven primarily by my concern that undue risk analysis and system design would be sought by the FRA, if not suppliers and railroads, for PTC’s safety enhancement functionality that had no effect on the “vitality” of the railroad’s operations. My approach was to describe “functional vitality” in addition to “equipment vitality” that is associated with CTC wayside infrastructure. The functional definition was required to address how movement authorities are generated in non-signaled, “Dark”, operations since conventional suppliers have little to no experience with Dark. Hence, they will state that there is nothing “vital” there in that they only deal with equipment vitality. This “equipment” perspective made it too convenient for the FRA to fatuously associate the concept of vitality with PTC equipment while ignoring the concept of functional vitality for Dark operations.

FRA was not alone in abusing the vitality perspective. Specifically, the Interoperable Train Control (ITC) committee was also guilty of pursuing a non-pragmatic perspective of PTC presumably based upon what they thought was necessary for a seemingly vital system. This group of conventional Class I engineering and operational individuals, that were charged with designing an interoperable PTC perspective for the U.S. rail industry, far exceeded the necessary requirements for a non-vital PTC. I offer the following: 1) development a positioning accuracy for PTC that was totally ridiculous, i.e., 18 cm with 10-9 confidence level, 2) integrated the need to enforce to Intermittent Signals (ISs); and 3) forced the implementation of a parallel wireless data infrastructure without developing a data model for PTC and thereby not identifying alternatives that should have been considered. These were serious engineering design errors that resulted in a tremendous increase in the capital investment, on-going maintenance costs, and implementation time to install PTC across the industry. Additionally, ITC failed to take on the requirements for transits and commuter operations. An example of this ITC’s purposeful exclusion (ignorance, arrogance?) is the inability of the current PTC design to prevent the recent accidents due to trains over-speeding in passenger terminals. To be clear, such prevention requires no additional investment to that of PTC along the mainline. The solution requires only the addition of GEO-fencing for trains entering terminals. But, ITC’s lack of integration of the transits and commuter railroads in their activities means that such situations will not be included, at least in the initial rollout of PTC.

Now, FRA has made a declaration of “Vital PTC”. Some of the material I read on the FRA Website that discussed vital systems also had PTC enforcement functionality and were branded as Vital PTC systems – which they clearly are not. Rather, they are Vital Systems (traffic control) with integrated PTC-type functionality. How desperate is the FRA to make such inappropriate associations?

Along this same line of thinking, perhaps FRA is presenting the Vital PTC perspective in that the on-board PTC platform can also display digital authorities via the wireless data platform that PTC requires for its functionality. Hence, FRA considers this to be Vital PTC. However, there is a primary fallacy here. That is, the transmission of authorities, whether verbally, visual (signals), or electronically is NOT a vital function. Such transmission and display is safety critical at best, i.e., one wants such transmission and display to be highly reliable, but if it fails then the engineer resorts to the underlying vitality of any railroad. i.e. the Book of Rules.

I am encouraged by recent conversations with colleagues that the railroads are now pushing back on FRA’s declaration of “Vital PTC”. Welcome to FRA’s La La Land.

Shaken! Not Stirred

About 20 years ago there was a cartoon in The New Yorker, a monthly periodical best known, arguably, by non- New York City residents for its cartoons.  This cartoon showed two wealthy gentlemen (in the style of the Monopoly game millionaire) lounging in the bar car of a passenger train with their martinis. (I think of them as Reginald and Wilfred).  Reginald states:  “This is a lousy martini. (pause) This is a Hell of a way to run a railroad”.

Being a martini enthusiast (only gin of course),  I can appreciate the nuance of making such an evaluation.

Back then, this now-shallow perspective was in actuality one credible way to evaluate passenger and freight rail operations in that it was “take or leave it” from the railroads’ perspective of running their railroads. That is, railroads provided the service that they wanted to provide given their monopolistic position as to transport.  However, beginning with the availability of the interstate roads during the Eisenhower administration, followed by the passing of the Staggers Act in 1980 that deregulated the freight railroads as to the price that they could charge for services, there was a gradual, but sustained shift to the customer’s perspective. That is, with these two major game changes of the interstate road infrastructure and the Staggers Act, entered competition not only between rail and truck transport, but also competition between railroads.

In the last several decades, both passenger but primarily freight railroads have taken on a different perspective; a perspective on what technologies can deliver to make a railroad’s operation both more safe and efficient. I must state first of all, that US railroads, both passenger and freight, are extraordinarily safe, especially when compared to operations across the globe. (See previous posting “ What Price Safety” for some additional insight on this point.  But, I need to go back to the martini point.)

There are martinis, and there are martinis. James Bond’s infamous standard of “Shaken, not stirred” makes the point. But first, I should note that based upon an independent analysis of literature regarding James Bond’s life style, it has been determined that he was quite a drinker with his consumption of an average of 45 martinis within a given week. OK, so that is 6 +martinis a night which makes him somewhat suspect as to his objective credibility as quoted by Dorothy Parker of Algonquin Round Table fame:  “ I like to have a martini, Two at the very most, After Three I’m under the table, after four I’m under the host.” So!  6+ martinis in an evening is clearly past the line.

The point of shaken, not stirred, can be applied to railroad operations, me thinks.  The difference between the two versions of martini preparations is that if a martin is shaken, then the ice can “bruise” the gin, where as stirred is like “Whatever, don’t mess with my gin.” Therefore, the parallel to railroads, you may ask, is that railroads have only been stirring their operational processes for the last several decades, at least, by simply upgrading their primary core technologies, i.e. communications, positioning, and IT, most noticeably with the shift from analog to digital, and the integration of distributed decision making platforms with the back-office infrastructure. But, railroads have not truly shaken up their business processes, a.k.a. process reengineering (dynamic work order is a good example), to take advantage of how the operation can change with advancements in technologies. Arguably, the most critical example is that of the management of train movements as to the underlying means of functional vitality (how movement authorities are generated) and the efficiency that an be achieved with more timely and accurate positioning of trains to advance from crisis-based fixed block operation to that of proactive, flexible block.

In this light, the passing of the Rail Safety Improvement Act of 2008 that mandates PTC deployment across most of the freight and transit rail operations in the U.S. has been both a blessing and a curse. That is, the PTC mandate is forcing the railroads to deploy an industry-based wireless data platform with mobile IT platforms on locomotives. That’s super. But, the over-engineering of PTC and the lack of technology strategy across the industry, has dampened the progressive advancement of business processes that can use these technologies.  Simply state, there is no business strategy in sync with a technology strategy, a.k.a. Strategic Railroading, in most of the railroads, yet alone with an industry perspective for freight operations.

So! Do you want to shake things up in your railroad – or your client railroads if you are a supplier? Or do you just want to stir the same old stuff, the same old processes, albeit with upgraded technologies? If you want to shake things up, then consider what can be done with virtual positioning and wireless data technologies.  For one example, click on the VCTC category on the right side on the home page of this blog and review the postings.

Finally, permit me to add my personal notes on gin. With my 46 years of legally enjoying gin across the globe, I offer my following evaluation of several:

  • Bombay Sapphire: a classic, a standard, not insulting to anyone.
  • Hendricks: Just too much rose – only good for 1 a month
  • Blue Coat: made in the U.S and excellent, but then again keep it down to several week if you drink your martinis dry.
  • Gibson: my favorite when in France – can’t find it in the U.S.

In the spirit of full disclosure, I should note that I wrote this posting while drinking wine only. Wine is for thinking and writing … and Martinis are for neither.

Innocence Lost: Rail Operations

In the previous posting on this blog, I wrote about the Innocent Lost of Engineers, meaning that with the introduction of the commercially-available, hand-held digital calculators in 1972, engineers began to lose their ability to approximate solutions for a series of calculations with various powers of ten involved.  For example: engineers of that generation could quickly determine that 3.936 X 44,888 / 1,987 is somewhere in the range of 4x(90×500)/(4×500) …hence … 4×90/4 … hence …  90. Such capability was an art that complemented the use of the now-obsolete slide rule, an analog calculation device that performed multiplication and division by literally sliding sticks ruled with logarithmic scales. This lack in the skill of approximation for engineers not experienced with the slide rule is unfortunate because it is critical for thinking on one’s feet to obtain answers to move through complex situations efficiently, albeit not accurately. I also believe the ability to approximate solutions adds greatly to one’s level of creativity. Unfortunately, engineers of today feel compelled to deliver exactness limited by the number of digits displayed on their digital device. Their answer for the above problem would be 88.91754806240564…

Considering railroads, I see a significant lack of creativity with the current set of primary technicians across the industry as to their inability to “think outside of the boxcar, if you will. A case in point here is the pursuit of PTC in the U.S. where technicians are designing to extreme levels of exactness and capability that are clearly not warranted (see posting The Goods, The Bads, & The Uglies, March 5, 2013  found by clicking on the PTC category on the right side of the home page).

Now, I suggest that railroad operators are in the process of losing their innocence as well as to how they run their railroads. Fortunately, however, this is a good thing. Instead of operating a railroad as they have in the past to satisfy their own perspective of what a railroad is, i.e., take it or leave it, railroads are focusing now on customer service for the benefits of their own bottom line as well as that of the shippers by improving customer service. This customer / bottom line perspective started to evolve in the 80s as railroad executives began to recognize the increasing amount of freight traffic being captured by the trucking industry via the nationwide interstate road infrastructure. As a subject for a posting in the future, this was the genesis of the intermodal industry that has now replaced coal freight revenue as the top source of revenue for several Class I railroads.

As to operators losing their innocence, I see 4 phases that will permit them to eventually maximize the use of their resources while delivering optimal customer service.

  1. Resource Rationalization
  2. Scheduled Operations
  3. Proactive Resource Management
  4. Industry Management Perspective

Unfortunately, as explained below, most of the major U.S. railroads have only managed to achieve the first phase of resource rationalization in the last 2-3 decades. Too few railroads have begun to pursue the 2nd phase of scheduled operations, yet alone the 3rd phase of proactive resource management, and certainly not the 4th phase of industry management perspective.

1.    Resource Rationalization

This phase began with the signing of the Staggers Act in 1980 that deregulated the freight rail industry in the U.S. This act introduced competition to the freight rail industry by removing the role of the now-defunct Interstate Commerce Commission (ICC) that regulated the tariffs for freight services. This first phase was managed via the infusion of MBAs in the railroads that struggled to work within the efficiency constraints of conventional traffic control systems and the associated operating processes. Such constraints included being confronted with the mindset of operators that fatuously believed that running a railroad without a true schedule was a test of their management skills. That is, a train schedule was something that was handed down to them by the ivory tower Service Design department staffed by MBAs, as “wouldn’t this be a great way to run a railroad”. But, a true operator was not being measured by such performance, but rather by his ability to work with conflicts as they occurred in traffic movements. Hence, what the MBAs provided at that point was limited to an analysis of contribution of individual rail corridors as to the railroad’s bottom, although that analysis was based upon non-scheduled operations. The result of their efforts was the shedding of rail corridors with less than acceptable performance. Unfortunately, the other primary assets, e.g., locomotives, rolling stock, crews, yard operations remained untouched as to their inefficiencies.

2.    Scheduled Operations

The railroads are now into the second phase of losing their innocence with the advancements in technologies, most importantly wireless data an virtual positioning, that can provide for more timely and aggressive handling of train movements by simply knowing where the trains are AND at what speed they trains are traveling. For most railroads in the U.S., they have only begun the process of deploying the necessary wireless data networks that can provide such data. It should be understood that this wireless deployment is not due to a strategy on the part of most railroads, but rather it is a deployment due to the Federal mandate to implement PTC, a system that requires a wireless data network.  I dare say that without that mandate, a number of railroads would still not being deploying such data networks due to a lack of operating strategy linked with a technology strategy (a.k.a. strategic railroading). For example, to my knowledge only 2 railroads in the US had such a strategy before the mandate to deliver the data required to improve the efficiency of their crisis-based dispatching processes.

 

With this additional level of timely and accurate train position and speed data, the challenge of efficiently dispatching trains increases beyond the mental capability of any dispatcher to deal with all of the variables in dense corridors. One should understand that effective dispatching until this time had been an art based upon not only the mental capabilities of the dispatcher, but also by his/her degree of experience with a particular corridor. And, based upon the principle that one can not effectively manage dispatching if one cannot measure the efficiency of dispatching, then I suggest that no major railroad had, and perhaps has, any effective measurement technique as to the efficiency of its dispatchers. Maybe, they think they do, but most likely it is based upon the conventional concept that a dispatcher should not make the same mistakes that s/he made yesterday, or the day before, or the week before, whatever.

Operating to schedule is not just about track time efficiency. Class Is are beginning to realize that the ability to run to schedule can result not only in better customer service, but also in a substantial reduction in the “slack resources” (a mathematical phrase when optimizing operations) that sit idle so as to permit some level of efficiency when locomotives are not where they need to be … or train crews outlaw … or the designated yard has insufficient in-bound tracks, etc. Simply stated, the unstructured inefficiency of depending upon the use of slack resources in a crisis-based, truly non-scheduled fashion is substantially greater than running to a schedule where slack resources are kept to a minimum to handle a substantially less level of conflicts when the schedule is corrupted…which is more the case than not.

3.    Proactive Resource Management

This next phase is that which only 2 Class Is to my knowledge have taken on. I introduced PTM a decade ago based upon a very simple construct. That is, in order to minimize conflicts of mobile assets, then wireless data is required to provide the timely and accurate data of where those assets are AND at what speed they are traveling.  With such information, then mathematical planners (basic algebra) can be used to predict where conflicts will occur. With that knowledge, then Operations Resource (OR) tools can be used that identify objective functions to minimize the consequences of those conflicts. For example, an objective function may be to reduce the travel time, or to maximize train velocity, for the set of trains being considered for a particular corridor, or for a set of corridors. Conventional CTC that is used across 50% of the U.S. freight rail trackage can only provide block occupancy with no knowledge of speed. For example, did that intermodal train come to a stop, and therefore the opposing merchandise is train being held on a siding for no reason? The other 50% of the freight trackage is dark territory where the dispatcher doesn’t even know which the block the train is in, yet alone the speed. Simply stated, PTM provides for flexible block operation (which is far short of the complexity, if not the questionable possibility of moving block) instead of the inefficiency of fixed block operation where trains vary significantly in length and speed. For further information on PTM, I suggest you read the posting Degrees of Separation, December 26, 2012 in the category Railroad Business found on the right side of homepage.

 4.  Industry Management Perspective

There  is a 4th  phase, which has yet to be initiated, that addresses the efficiency of the industry, and not just an individual railroad. The underlying point here is quite straightforward, but yet continues to be ignored. That is, given the substantial necessity of trains across U.S. railroads to operate within a specific region, yet alone to go from coast to coast, it is impossible to achieve the highest level of scheduled railroading if the interconnecting railroads are not running to schedule. So, there is a Catch 22 in that a given railroad cannot operate at its highest level of efficiency until the interconnecting railroads are running to schedule, but those railroads cannot operate to schedule until the given railroad is operating to schedule.

 

I see 2 requirements to break into this circular logic. First, the increasing use of PTM will narrow down the complexity of the interconnection challenges. Second, and most important, the annual bonuses of railroad executives need to be structured to place emphasis on industry efficiency, and not just the efficiency of their individual railroad.

 

Lastly, for the majority of railroads in the U.S., as well as for a number of low density corridors in the Class Is, there is still an issue of considering how wireless data, virtual positioning, and on-board intelligence (such as that being provided via the implementation of PTC), can replace their current dark territory and low density CTC operations with Virtual CTC (VCTC) as described in other postings, including videos, on this blog (click on the VCTC category on the right side of the homepage).

 

All of the above is really quite straightforward to understand, but the traditionalists of railroads have yet to grasp that a paradigm shift is available to them given a shift in the core technologies that is available to them: again, wireless data, virtual positioning, and on-board intelligence.

Innocence Lost: Engineers

Prior to the commercial introduction of the handheld digital calculator by Texas Instruments (the developer of the integrated circuit, a.k.a., micro-chip) in 1972, the act of performing mathematical calculations was often by means of the slide rule, a handheld analog calculator, that “miraculously” performs division / multiplication by adding / subtracting log scales via sliding bars. Using the slide rule back then was both a science and an art; an art that is now lost for those engineers nurtured only by digital technologies. That is, with the slide rule there was a certain level of innocence for those folks, myself included, in that we had to accept a marginal level of accuracy (versus doing time consuming, long hand mathematics) based upon the granularity of the scale provided on the sliding bars – what is referred to as significant digits. However, with the digital calculator, the accuracy level is only restricted by the number of digits displayed on the device.  For example, 8 / 3 on the slide rule would only permit a solution of 2.7 due to the principle of significant digits. However, on the digital calculator with 8 digit displays, for example, the answer would be 2.6666666. One consequence of such innocence, now also lost, was determining the placement of the decimal point in a series of calculations. For example, using the simple 8 / 3 calculation, the manipulation of the slide rule would be the same for 800,000 / 3 as it would be for 8 / 3.  Hence, the approximation of 2.7 shown on the slide rule required the user to interpret this as 270,000 – versus the 266,666 displayed on the digital calculator. And, for a series of calculations, this could indeed be a challenging effort.

 

The point of the above is that the innocence of approximating answers based upon significant digits and placing the decimal in one’s head has been irreversibly taken from us with the onslaught of the digital age. Unfortunately, this lost of innocence, in my opinion, has placed a fatuous belief in the importance of absolute accuracy, versus the pragmatic perspective of what really is required for a given situation. And, I suggest this difference is proving to be very expensive unnecessarily in the development and deployment of technologies across the majority of the rail industry that doesn’t deal with high speed / high density operations. Simply stated: Rail time IS NOT Real time for the majority of railroads across the globe.

 

A primary example of Rail vs. Real is the collection of PTC efforts in the U.S.  For the pragmatist, the timeliness and accuracy of train position and speed required for traffic control, traffic management, and enforcement (my generic term for PTC) for the majority of railroads across the globe, is rather basic and inexpensive to provide compared to the technical architecture being developed by the Interoperable Train Control (ITC) committees charged with designing PTC. To expand my point, I refer you to my previous posting on this blog as to the “The Simplicity of Complexity” where I refer to the “80/20” rule, i.e., where 80% of an objective of (choose a topic) can be achieved with 20% of the resources required to achieve 100% of the objective, if that 100% is even achievable. Applying the rule of 80/20 to PTC and traffic control /management (see my postings on VCTC), then unlike those individuals raised on digital precision, the position AND speed of trains in supporting PTC and effective traffic control / management is greater than that provided by fixed block signaling systems, but substantially less than real time. That means that engineers charged with designing virtual positioning approaches, e.g. GPS, and wireless data infrastructure to deliver the data for on-board enforcement as well as to the back office control / management systems, do not require anything approaching the complexity of the technologies being designed for PTC. Yet, our current breed of technicians that have been raised exclusively in the environment of digital communications, video games, and the instantaneous and unlimited throughput of wired IT architecture, do not have that 80/20 perspective. For example, why does a railroad need a level of positioning accuracy for PTC that far exceeds the accuracy of the braking curve for enforcement? And, yet, that is what has been designed by ITC. As to wireless, why do the railroads need a 220 Mhz network in parallel to the already installed 160 Mhz infrastructure? Actually, I know the answer to this wireless question, and it has to do with the failure of the railroad technicians (and their management) to develop a pragmatic strategy of what they could have done to replace their analog 160Mhz platform with a digital trunk system (e.g., TETRA) that would have greatly increased the capacity of that infrastructure to not only handle PTC, but also to readily handle the wireless voice requirements of crowded metropolitan areas such as Chicago and Kansas City.  Ok, so perhaps that last sentence is a bit technical here, but it shouldn’t have been for technicians that should have sought out pragmatic solutions.

 

The bottom line is that US railroads, for PTC implementation alone, will be investing $Billions more than that which is really necessary. One could perhaps make the argument that such an investment will have other benefits in the future such as developing an industry-based strategic operations plan involving the effective interchange of trains, chain of custody, asset and shipment management, etc.  BUT, that strategy does not exist … and nor will it until railroad executives are compensated via their personal objectives and associated bonus program to take such a viewpoint.

 

In a forthcoming posting I will be writing about the Innocence Lost: Rail Operations, But unlike the innocence lost for engineers, this will be a very positive perspective because it really addresses the Ignorance Lost.

The Simplicity of Complexity

During my 5 decades + of post-graduate experience in handling a wide variety of positions that have involved technical, functional, and mathematical challenges without any precedence, it seems that I have purposely sought out those unique engagements without any obvious solutions. I have done so based upon what I have proven to myself to be a truism: the more complex an engagement appears to be, the easier it is to resolve.   Although this concept is counterintuitive for most folks I expect, and not as true when dealing with leading-edge technologies, the fact is that too many professional types tend to over-think what needs to be done when it comes to threshold technologies. I am referring to those basic technologies that provide the data to support the processes that are required to manage one’s company’s operation in a truly cost-effective fashion. Unfortunately, it seems to me that the more that STEM (Science, Technology, Engineering, & Mathematics) individuals are engaged with the subject at hand, the greater the risk that the solution will be over-thought … and therefore over-engineered … and therefore unnecessarily over-expensive as to both investment and maintenance. What is missing by the STEM professionals, in my opinion, are two primary principles of an MBA.

 

First, is the understated (and therefore underappreciated) principle in the application of statistics and realizing the rule of 80/20. That is, the variance in the coefficients of variables (if not the ability to identify all variables) that are required to make a mathematical / functional / technical analysis of (choose at topic) means that 100% of the objective is never achieved. Rather, one shoots for 80% of (chosen topic) which will require only 20% of the cost to purse an acceptable, achievable goal of (chosen topic).

 

The second principle of the MBA is to provide a Bottom line, Business perspective to what is being sought. This perspective suggests that STEM should be modified to be STEM-B. Below, I discuss Both the simplicity of complexity, the 80/20, as well as the Bottom line perspective. The distinction I am making here is the difference between STEM Technicians and STEM- B Technologists.

 

Complexity / Simplicity

As an example of the simplicity of complexity, I reflect on the early days of the U.S. space program. At one point, there was a significant effort on the part of space STEMs to develop a solution for astronauts to shave in a gravity-free environment so as to prevent the shaved whiskers from fouling the on-board electronic equipment. Several solutions would have been to use only Native Americans or female astronauts (assuming that smooth legs would not be a requirement). After significant research in vacuum-capture systems, the chosen solution at that time was to use a razor in concert with shaving cream that would capture the severed hair particles – how effective, how pragmatic.

In this vein relative to railroads, PTC is a prime example of how the technicians have clearly blown it. As addressed in earlier postings on this blog, these folks have totally over-engineered not only the functionality of PTC, e.g., the enforcement of intermittent signals (ISs), but also over-designed 2 of the 3 core technologies of PTC, i.e., communications and positioning (see posting on March 5, 2013 titled “The Goods, the Bads, & The Uglies” that can be found on the blog by selecting the category of “Strategic Core Infrastructure” on the home page). At least the third core technology of Information Processing was well thought out as to the use of 2of 3 processors to ensure the availability of the on-board PTC platform to avoid regulatory requirements to proceed at restricted speed should the PTC unit fail in route.

So! What is the simplicity of complexity? By this I mean that if one takes an 80/20 perspective of what can be accomplished by making good assumptions, then solutions can be realistically achieved.  For example, no railroad is 100% safe, even though the FRA fatuously states that there should be ZERO tolerance for unsafe railroad operations. The truth is that a railroad’s operation has 0% chance of being 0% unsafe unless it runs zero trains. That doesn’t make any sense, of course, and such expectations of absolute safety results in overbearing regulations such as the PTC mandate (thanks to a knee jerk reaction by Congress to the horrific MetroLink – UP accident in 2008) that is clearly not cost-effective for U.S. railroads. When I designed the first overlay PTC system in the U.S., and subsequently in Egypt (as discussed in the most recent postings on this blog), I made a 80/20 evaluation of what could be achieved with the technologies at hand relative to the operating environment of most railroads across the globe.  For example, it was clear that a vital system (that which generates the movement authorities for trains to advance) that integrated traffic control with enforcement, such as moving block, was not technically nor functionally achievable in a cost-effective fashion due to technologies, operating practices (including the handling of yard operations), given that the majority of train movements are unscheduled both within and between railroads (interchange). In the case of Egypt, the issues are even more complex given the use of “vital employees” that manually generate movement authorities. Hence, I designed Virtual CTC solution (VCTC) to address what could be done cost-effectively to prevent the majority of accidents in the U.S. as well as both the safety and efficiency of the Egyptian National Railways (ENR) and the majority of small and medium railroads across the globe. This process required making assumptions as to what was really needed for safety – an analysis that subsequently proved to be right on. Do these solutions meet the FRA expectations for ZERO tolerance? – Absolutely not – BUT, then again, nothing can. However, VCTC is very cost-effective … and exactly what the Egyptian Railways and many other railroads across the globe need to make their railroads financially viable while providing unprecedented safety not achievable with conventional operating systems.

Being 80/20 in one’s thinking means having the mental and institutional ability to be creative, To be mentally creative means having the ability, again, to make assumptions that eliminate that 20% of the problem that can’t be achieved in any reasonable fashion, and then design a solution, followed by a subsequent review of the assumptions made to be sure that nothing critical was left out.  As to institutional freedom, I am referring to the organization permitting its employees to pursue justifiable, cost-effective solutions that make financial sense. Unfortunately, it would be naïve to ignore the fact that most executive bonus programs are based on the near term, without a long-term strategic perspective, that may restrict such a process.  A case in point here is the lack of an industry-business perspective by the US freight railroads that could deliver interchange data for minimizing the effect on scheduled operations. That is, a railroad dependent upon interchange is constrained to running to schedule if the other railroad is not running to schedule, and visa versa. This is an industry issue. (Does any railroad have the evaluation of interchange efficiency in its executive bonus program?) Interestingly, it is the PTC mandate that is forcing the railroads to develop an interoperable, industry-wide wireless data infrastructure that can deliver such industry wide applications for the benefit of all. Without that mandate, it is my opinion that the technical solutions of individual railroads would have prevented such a strategic perspective. This point introduces the second issue of addressing the bottom line.

 

The Bottom Line

So, how did the technicians manage to ignore the bottom line with the over-engineering of PTC to meet the PTC mandate?  And, arguably more important, why is there no Industry Strategy on how an industry-wide wireless network, that will be delivered to meet the interoperability requirement of PTC, can benefit the railroads both individually and collectively (e.g., the ability to improve scheduled performance with the availability of timely interchange data of foreign trains …  or … How is that foreign locomotive in the lead of the train on my property performing?)

On June 6, 2011 I made a posting “Six Wireless Decisions Your Wireless Management Shouldn’t Make”  (which can be found on this blog by selecting the category of Strategic Railroading on the right side of the home page, going to the bottom of the postings that are provided and then clicking on Older Entries). This posting paraphrased an article in the November 2012 issue of the Harvard Business Review (HBR) titled “The Six IT Decisions Your IT People Shouldn’t Make”. Simply stated, the HBR article makes the point, and my wireless version parrots, that operations management fails “to recognize that adopting systems poses a business – not just a technological- challenge. Consequently, they (a company’s senior management) don’t take responsibility for the organizational and business process changes the systems requires.” The result of this lack of involvement is that the CIO (or CWP – Chief Wireless Person), with a technology perspective exclusively, is constraining the advancement of the company’s business processes, and most likely the return on IT (or wireless) investment and, more importantly, the company’s bottom line.

In that prior posting I suggested the following 6 decisions that the CWP shouldn’t make as to wireless in sync with HBR’s article as to CIOs and IT.

  1. How much should we spend on wireless?
  2. Which business processes should receive our wireless dollars?
  3. Which wireless capabilities need to be company-wide (and industry-wide)?
  4. How good do our wireless services really need to be?
  5. What security and privacy risks will we accept?
  6. Whom do we blame if a wireless initiative fails?

To add my personal touch here, I list below some questions that the senior railroad executives may want to ask their Engineering and Operations management.

  1. What are the plans to use the wireless data for our internal purposes?
  2. What is the strategy for the industry to use the forthcoming wireless data network?
  3. What accuracy do we really need for train positioning and speed?
  4. Does CAD provide the necessary traffic management tools to perform proactive traffic management?
  5. What can be done to improve the reliability of interchange to increase scheduled operations?
  6. Does Operations know the condition of the foreign locomotive in our trains?
  7. How do we measure the efficiency of the dispatchers?
  8. Is Service Design aligned with what can be done with timely train position and speed data as to developing an achievable train schedule?
  9. Why oh why are railroads enforcing ISs for PTC?

The closing point is that the rail industry needs technologists, in sync with technicians, that can deliver solutions based on the bottom line, both for individual railroads as for the industry.  The railroads are not on schedule here as well.

Railroad Operations: A Virtual Perspective

Based upon the study my team just completed in Egypt to evaluate the safety and efficiency of the Egyptian National Railways (ENR), I have posted a video on youtube, and is provided below, as to the design for a new traffic control, traffic management, and enforcement system. This system is referred to as Virtual CTC + Enforcement. It offers small to medium railroads across the globe, both freight and passenger, a cost-effective and pragmatic solution to delivering both efficient and safe railroading with enforcement capability that exceeds PTC, ETCS, and ATC. VCTC does not require either the extensive capital investment or extensive on-going maintenance of conventional or advanced traffic control systems.
Check it out!

Faking It

I played a decent amount of basketball in my high school years.  However, being 6’3” was not enough by itself to compensate for my lousy shooting. And, I wasn’t a good shot because I was unwilling to practice enouigh to build that “muscle memory” of the physics associated with putting the ball in the hoop. Therefore, I spent my court time mastering the interception of passes between the opposing team players by anticipating their moves. I was really good at “reading” their intentions in the passing of the ball.  My skill, it seems, was a combination of perception and the ability to fake where my attention was in the other team’s handling of the ball. My strategy was if I could intercept their passes, then I could pass the ball to my team members who could make the shots. The point here is that there are those individuals that grab the ball, and there are those that can make the points once they have the ball.  This is one ideal “team” perspective in my opinion given so very few individuals can do both.  Unfortunately, in the U.S. railroads today, those who have the responsibility for obtaining the ball also have the responsibility for taking the shots – and they really suck at shooting. I am referring to the railroads’ technicians and their free-hand at designing and installing technologies without responsible upper management oversight. Simply stated: I think there is a great deal of faking going on in railroad management, whether it be intentional or just the nature of the organization.

Is there any doubt that there are times that each of us fakes it personally and professionally . . . but not necessarily for the wrong reasons? That is, we present viewpoints and take on tasks that are beyond our actual knowledge and skill set with the expectation (based upon past experiences) that we will succeed … and with the hope that our audience won’t be able to contest us either due to their lack of on-point knowledge or their lack of intestinal fortitude to take on the “authority”.  Unfortunately, however, in the railroads I see faking-it to be a two way street between the technical and operational managers that is resulting in a horrific waste of capital and, in the case of wireless, the waste of valuable RF spectrum. That is, the technicians fake that they have done their due diligence in promoting that there technical solutions are absolutely the most cost-effective . . . and the operators feign (or worse don’t even participate) that they have done their due diligence in challenging and understanding what they are offered by the technicians. While I am sure that there are some excellent examples where it is clear the technicians and the operators have worked together to deliver cost-effective technical solutions, there are too many examples where they have not. Arguably, the most egregious is that of the ITC efforts to address the interoperability challenges of PTC. There are 3 primary examples.

  1. I have already exposed in this blog as well my articles in Railway Age, and my submissions to the FCC, that the grab for more and more 220 MHz by the Class Is is an intentional scam (IMHO). This is faking-it taken to an unprecedented level for the industry because it is not a single railroad that is the perpetrator, but rather a class(1)action, if you will.
  2. Having spoken recently with a supplier of NXDN, a digital wireless protocol, I am of the opinion that the availability of the significant increase in channels  by narrowbanding VHF has afforded the railroad technicians the opportunity to once again forego their responsibility of using at least the 160 MHz band in a good-citizen, yet cost-effective fashion.
  3. As to positioning accuracy for PTC, the technicians are striving for levels of accuracy that are far, very far, exceed that which is really necessary due to their inability to understand what is really required, and rather to ensure that they will never be at fault regardless of the cost.

Fortunately, there are several railroads that don’t buy into these fatuous technology activities and recognize that there are solutions that are much more cost-effective. It would seem that these railroads have a team perspective of obtaining the ball and making the shot. But unfortunately for too many railroads, there is a lack of upper-management understanding and support for doing the right thing for the right reason. That is, for too many railroads the exploits of technologies by technicians goes unchallenged by the management teams that have the responsibility for their railroad’s bottom line, with or without consideration of what makes sense for a country with constrained RF capacity.

THE bottom line is that the technicians are in fact faking it as to providing technology-based solutions that are grounded in responsible economics. They are doing so because, IMHO, 1. they believe that it is their responsibility to provide the best (most complex) technology regardless of the cost and regardless of whether or not such complexity is required, and 2, railroad management has failed to get involved in understanding the business perspective of technology decisions. So! Who is at fault?  In my opinion, it is the RRs’ senior management failure in developing a business strategy in sync with a technology strategy that has set up the situation. Could the focus on the current year’s bonus plan have anything to do with this? Hmmmm!

So!   I ask you: When you fake it, are you doing so for the right reasons?  Are you avoiding the critical issues important to your organization so as to “kiss up” to your management or to your annual bonus, whether you work for a railroad or a supplier? . . . or . . . Are you realistic as to what can be achieved and willing to speak up? . . .  or  . . . Do you really care one way or the other? As an independent consultant I don’t fake it with my clients.  They will get both a short-term tactical and a long-term strategic perspective whether they want it or not. I will grab them the ball, but they have to make the shot.

Degrees of Separation

The concept of 6 degrees of separation was initially introduced in a play written by John Guare in the early part of the 20th century declaring that each of us is only six steps of introduction from any person in the world. In current terms, this concept is readily acceptable given the advancement in communications and travel that has shrunk the world as to providing such connectivity. In fact, with the predominance of social networks available via the world wide conduit of the internet, one could argue that the six degrees of separation is now substantially less, if not just one. Arguably, the most dramatic example is that of the Arab Spring that has brought the citizens of suppressed countries, including their expatriates, to the point of uniting against their respective governmental tyrants.  One would like to think that our individual connectivity has no boundaries at this point as long as the paths of internet communications can be provided to the masses via wireless. However, as well demonstrated by the recent U.S. Presidential election, this same advancement in connectivity also provides the ability for those individuals that don’t have a rational understanding of facts to present their self-serving prejudices to misdirect those that solely place their faith in the written word, as to what can be achieved. To that point, only but the most uninformed or self-serving individuals would be quickly reminded by the Republican campaign for the recent U.S. President election which overwhelmingly (compared to that of Democrat’s campaign), consisted of a constant stream of a substantially misrepresentation of facts to present a phenomenally irrational, non-compromising  right wing perspective that serviced those most-selfish individuals that have benefitted from the benefits of a capitalistic  society, but without the recognition of the masses that have made their accomplishments achievable. Fortunately, for the benefit of the majority of the U.S. populace, President Obama was re-elected. With that stated, onward to railroads.

Playing on this concept of how technologies, most specifically wireless communications linked with Internet, have brought the world closer today, it also true the degree of train separation can also benefit from the introduction of technologies, again wireless data, and the use of advanced traffic management systems that can provide a substantial increase in traffic density for any given corridor by simply knowing the position AND speed of trains. With the availability of both position AND speed data, that doesn’t  exist for the majority of railroads across the globe, a railroad’s operations can project  and prevent conflicts that may occur even within fixed-block operations as determined by traditional electronic signaling operations that depend upon traditional wayside technologies that provide block-size positioning at best. I refer to this capability as Proactive Traffic Management (PTM) as is described in greater detail in  various other postings on this blog.

The deployment of PTM is quite inexpensive  both absolutely and especially relative to its value in that it can be provided as an overlay to a railroad’s choice of traffic control, whether it be signaled or non-signaled, WITHOUT replacing the dispatching platform. This is true because PTM is only a management decision tool and not an execution platform such as CTC or Track Warrant. As a decision tool, PTM can dramatically complement, if not replace in many cases, the skill set of the dispatcher who is a manager of the execution platform. This means that PTM is not functionally vital, i.e., it does not generate authorities that provides for the integrity of train movements. The ultimate deployment of PTM is when it is tightly integrated with traffic control thereby becoming some level of moving block – a vital system. But only a few high speed / high density railroads can benefit from a moving block capability. In fact, in the U.S. there are a number of operations-savy individuals that will note that moving block for the most dense freight traffic corridors would provide little benefit until the yard operations are optimized concurrently. So! As an overlay to traffic control, short of making a transition to moving block, what is holding back the deployment of PTM across the majority of globe? I believe the primary reasons differ between public and private railroads.

PUBLIC: Outside of the Americas, the predominance of rail operations are owned / controlled by the governments of the countries in which they operate.  Again, in general, these are passenger operations without a clear responsibility for addressing financial bottom line, i.e., providing cost effective solutions that have to pass the threshold business test as to making a profit, or else it is out of business. In these environments it seems that the suppliers often rule the roost in designing the traffic control solutions that aren’t necessarily cost-justified. Technicians thrive on promoting systems in this environment; they believe that they are justified in delivering solutions without restrictions as to costs. However, for those countries that are confronted with growing their economies internally, as well as integrating with the world economy, they are being presented with technologies that they simply cannot be justified.

PRIVATE: In the Americas, the freight railroads are competing with road, barge, and pipeline transport and therefore have to maintain a for-profit operation to stay in business … or they are out of business. Indeed, in the U.S. there have been tens if not hundreds of railroad bankruptcies in the last century. The Penn Central bankruptcy in the 70s (which the largest bankruptcy up to that time for all industries and for which I was the lead financial analyst for the Trustee Staff, is the ultimate example. This railroad lost its understanding of what it was, and eventually went under. That railroad went into a downward spiral as it reduced maintenance expenditures . . . which resulted in reduced traffic speed . . . which resulted in the loss of revenue . . . which resulted in further reduction in maintenance expenditures … and the downward spiral continued to the point of bankruptcy.  Conrail was the Phoenix rising from the ashes of the Penn Central. OK, back to the issue of separation.

The separation between trains, a.k.a. headway, is THE key issue in determining the type of traffic control that should be in place, whether it be freight or passenger operations. Those European suppliers that service the high speed, high density operations in place across that continent have developed sophisticated systems that provide for both safe and efficient operations. BUT, what about those countries in Africa, the Middle East, and elsewhere that need cost-effective solutions to bring basic rail infrastructure to grow their GNP, both internally and relative to the world market?  They cannot afford the likes of traditional signaling, yet alone ETCS 1,2,3. These railroads need cost-effective solutions ; they need traffic control solutions generically referred to as dark territory that are used by railroads in the Americas that have a clear vision to the bottom line. They also need enforcement systems to prevent accidents due to human errors.  I speak with experience on this point given my assignment as Project Leader to address the safety and efficiency of the Egyptian National Railways (ENR) that still uses token and token-less traffic control across 82% of its operations.  With detail to be provide in the next posting on this blog, my team of independent consultants  (we don’t represent suppliers and we don’t accept commissions) have designed a traffic control, traffic management, and enforcement system that greatly improves both the safety and efficiency of ENR’s operation at a mere fraction of the cost to deploy ETCS.  This is a proven system as to the individual components that we have integrated. We have done so recognizing the true nature of ENR as to what they are and will be in the foreseeable future along with the realization of the capital investment that they can support. The approach I have titled as Virtual CTC (V-CTC) + Enforcement,  provides CTC functionality with the ability to prevent accidents due to drivers AS WELL as mechanical interlocking operators and level crossing guards, as well as the loss of train integrity. For example, two horrific accidents in Egypt in November, 2012 resulted in 54 fatalities that could have been prevented with V-CTC + Enforcement due to errors by mechanical interlocking operators and level crossing guards. Both of these accidents would not have occurred in the U.S., but in Egypt with their antiquated traffic control systems dependent upon “vital employees” (see the previous posting on this blog), there were human errors for which there was no enforcement system in place to prevent. But, through the efforts of my team in performing our study there, we recognized and modified the enforcement concept of PTC to handle. Specifically, we have designed an approach that monitors the traffic control activities of these vital employees to ensure that they have performed in providing valid movement authorities.  Most importantly, Virtual CTC + Enforcement minimizes the capital requirements to operate the railroad both safely and efficiently, versus slamming in signaling infrastructure and/or ETCS that would be 30 to 50 times more expensive by my rough estimate.

I can’t over emphasized the need for pragmatic, cost-effective solutions for traffic control, traffic management, and enforcement that traditional suppliers have refused to address for the majority of railroad operations across the globe.  Shame on them. Enough said. The next posting here will present V-CTC + Enforcement for those railroads and suppliers that are looking for solutions that support the majority of railroads across the globe that don’t provide high speed / high density operation – both passenger and freight. Please contact me at comarch@aol.com if you which to discuss your particular interests. My team of seasoned railroad professionals can address the functional, technical, financial, and mathematical throughput analysis of considering V-CTC + Enforcement from both a tactical and strategic perspective relative to expanding the safety and efficiency of a railroad’s operation, especially when integrating freight and passenger operations.

The bottom line here is that I warn railroads from being fooled by the written and stated words of suppliers that have solutions that are not appropriate for their operations. There may be pragmatic, cost effective solutions of which they may not be aware.

It Takes an Industry: Education

This is the 2nd of 3 postings that address Industry INTRAoperability (I/I), i.e. the development of systems that support the business interest of the entire rail industry, versus the advances in technologies and systems made by each individual railroad for its singular purposes.  I/I is not the same as Railroad INTERoperability, as is required to deploy Positive Train Control (PTC) as a safety enhancement to the traffic control systems that provide for the integrity of movement operations. Rather, I/I addresses the business perspective of the advantages to the industry by the improved management of key resources subject to the interchange of trains between railroads. The assets that I am referring include the full array: track time, train crews, yards, locomotives, rolling stock, and shipments of high value and/or involving security issues.

Yes! I did state track time, train crews, and yards even those assets don’t cross borders. The reason for doing so is that the use of those assets increases in efficiency as the degree of scheduled operations increases . . . And, the ability of an individual railroad to run to scheduled operations is partially dependent upon the schedule reliability of the railroads with which it interconnects . . . And, since most railroads have yet to demonstrate their ability to run to schedule to a significant extent, contrary to their claims, then a valuable opportunity of pursuing I/I is that of providing timely data of train movements, both position and speed, across all interconnecting railroads so as line-ups can be adjusted in a timely fashion.  Unfortunately, even with such data, a number of roads are incapable of using it to any great extent given their lack of Proactive Traffic Management techniques that I introduced 6 years or so ago in my quarterly publication, Full Spectrum. However, it is encouraging that at least NS and BNSF have made such advancements via the deployment of pragmatic wireless solutions that can report the speed and position of their own trains on their respective properties.

As to the locomotives, rolling stock, and shipments that do cross railroad borders I identified a number of I/I applications in the FRA-funded study I performed in 2008: A Demand and Supply Analysis of the Opportunities for Wireless Technologies in Passenger and Freight Rail Operations, (www.fra.dot.gov/downloads/Research/ord0802.pdf). As the result of that study, I decided shortly thereafter to take the same approach that IBM used in the 60s and 70s to bring about major changes in the traditional business processes of a full range of industries with the introduction of main frame computers. That is, IBM established major executive education facilities and curriculums across the U.S. to expose their prospective clients’ top management teams to what could be done with computers. As noted in the previous posting, the initial efforts focused on replacing manual data handling processes, e.g., payroll, accounts receivables / payables, with computerized data processing. However, with the introduction of affordable disk storage and the integration of telecommunications with computers, the curriculums expanded in scope by identifying how to change the traditional business processes given the opportunities to rethink the flow of information within and between enterprises (The process of structuring a strategic information flow architecture will be discussed in the next posting: It Takes an Industry: Process).

So, following IBM’s lead I put together an Strategic Railroading Symposium for top railroad executives that would be sponsored by the supplier community overall to remove even the perception of bias. The symposium schedule (presented below) that I put together consisted of 2 tracks, Operations & Engineering, with two categories of topics each, that addressed I/I opportunities as well as other possible applications that I believed at that time would be valuable exposure for railroad top management. Actually, this effort was progressing well with the expression of key suppliers to participate . . . that is until the ramifications of the just-ordered PTC mandate took effect. At that point, rail’s management teams withdrew into their caves rejecting the consideration of anything other than the challenges of implementing PTC. The suppliers, hence, backed away from the opportunity given their inability to market even their current products and services, yet alone the challenges and risks of developing a long-term strategic perspective.

As you will see in the agenda below, several of those applications have had sporadic initiations across the industry in the last several years.

OPERATIONS
Traffic Management
Delivering Proactive Traffic Management NOW without new CAD
The pragmatic application of meet/pass planning tools
Effective management of the line-up
The challenges and opportunities of effective interchange
The challenges to increasing scheduled operations
Reconciling the perspectives of Service Design vs. Operations
Integration of yard status with main line dispatching
Minimizing conflict between high speed passenger and freight trains
Resource Management
Optimizing crew management relative to the lineup
Balancing locomotive fleets across the industry
Industry tracking of key rolling stock and shipment status
A new look at work order reporting in light of TSA requirements
Maintaining chain-of-custody for critical shipments
Opportunities for improved yard management
ENGINEERING
Track & Wayside
Unattended, locomotive-borne track inspection
Enhanced safety for on-track workers without authorities
Enhanced safety for workers within work zones
Monitoring the position and health of critical maintenance equipment
Rolling Stock
Locomotive tracking & diagnostics across the industry
Performance-based locomotive maintenance
Industry-based locomotive maintenance
In-train monitoring systems of equipment and shipments

When rail management surfaces from the PTC abyss, then perhaps there will be an opportunity to reconsider some version of the Strategic Railroading Symposium.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop