Archive for the ‘Railroad Business’ Category

Paper Tigers

As a fresh, professionally unencumbered MBA in 1970, I joined IBM as a Data Processing Representative (computer salesman of main frame and sensor- based computers). IBM was an extraordinary company with absolute business ethics with zero tolerance as to business ethics errors, including misrepresenting the products, both hardware and software. However, the competitors were not always so in their pursuit of a portion of the market. They disparaged suppliers without objectivity and made non-credible proposals as to performance. Fortunately, more often than not, IBM would close the deal by bench-marking its systems against the Paper Tiger proposals of the competitors’ inferior products and services. One of IBM’s advantages included the ability to make a proper business case given its emphasis on hiring MBAs for its sales force. Those ethical principles have guided me through by professional career, both as railroad management and as an independent consultant – meaning that my consultancy Strategic Rail, llc (SR) neither represents nor accepts commissions from suppliers for what we design for our railroad clients.

Moving forward 4+ decades, SR was awarded a project to design a new traffic control, traffic management, and enforcement (think PTC) approach for Kazakhstan’s railroad, Kazakhstan Temir Zholy (KTZ). At that point KTZ, as is true for most if not all Commonwealth of Independent States (CIS) – ex Soviet Bloc countries, was suffering from an antiquated CTC installation of 40-50 years ago. The cost of maintenance and the effect on throughput was choking the railroad. Fortunately, SR had just completed a similar study for the Egyptian National Railways (ENR), where SR designed Virtual CTC (VCTC) for 80% of that most antiquated railroad to replace British Empire train control methods known as token and token-less block. Hence, I had a clear vision of how to win the project. It only took one statement to be awarded the project when I met with KTZ’s VP Engineering at the time.

The VP spoke no English, and my Project Coordinator and translator was late for the meeting. As I sat across from the VP waiting for my colleague, I simply stated “NO Balises”. His eyes lit up, and he called in his translator. Via the translator I continued to explain that VCTC required extremely little wayside infrastructure by excluding balises, signals, track circuits, and control points. My colleague arrived, and we continued to explain VCTC in detail. It was then that the VP informed me of an implementation of ETCS-3 that was underway on a new corridor across the country. Via my colleague, I said to him that he had been sold a Paper Tiger explaining that the supplier was purposely misleading KTZ and collecting $100 million or so for what they were hoping they could deliver by using KTZ as a developmental corridor: ETCS-3 at that point didn’t exist in revenue service to my knowledge – and still doesn’t to any extent that I am aware of now.

Over the following months as SR proceeded with its engagement, I would occasionally say to the VP: “The ETCS-3 supplier is lying to you.” as translated by my colleague. That statement finally took hold with KTZ as evidence continually mounted. Finally, the supplier was booted off the property (after being paid a significant amount of the project budget), Additionally, the supplier’s local representative(s) was reportedly charged for criminal business practices. This is not surprising since the corridor involved could have been handled by manual block, at least for the short term, and VCTC eventually for a fraction of the cost of ETCS-3 and conventional CTC.

There were three primary issues in this situation. First, arguably most important, the supplier was not ethical in its presentation of what it actually had. Second, there is that issue of questionable marketing techniques. Third, the supplier was there to sell products and not solutions, and they were looking for an ETCS-3 opportunity. Undoubtedly, the selling of products versus solutions is prevalent across the globe, and major conventional suppliers get away with this given that most railroads across the globe are owned by their respective governments and without the proper resources to evaluate what is truly needed. Not surprisingly, a supplier is not going to design and sell a low-cost system as to both capital and maintenance – not a good short or long-term revenue plan in their opinion. Hence, traditional, conventional suppliers hold many railroads captive to what they offer, and the transportation requirements to support the wealth of these countries are suffering accordingly.

Beware of Paper Tigers. They are not an endangered species.

Paradigm Shifts

Throughout my 2½ decades of independent consulting, including performing market studies and developing technology strategies for suppliers and railroads, I have had the opportunity to speak with a variety of senior railroad operation managers. During those discussions I would often ask the individual if his/her railroad ran to schedule. The response was consistently the same: “Yes, but … (some fatuous excuse, e.g., reducing crew starts given short trains)”. To some extent these responses can be seen as understandable given the data handling constraints of century-old operating technologies and associated practices as well as the evolving, inefficient silo-based IT architecture since the 1970’s. Additionally, there is little to no enterprise perspective of the consequences of one department’s action relative to other departments, e.g., excessive locomotives to cover shortages due to lack of actual schedule. However, the challenges to even approaching truly-scheduled operations are not just technical, functional, and organizational. Arguably, the most difficult challenge is that of modifying the management practices that have existed for decades. Therefore, advancing the efficiency and safety of U.S. freight railroads requires making shifts in both the technology paradigms as well as that of management.

Technology Paradigms
My article, Enterprise Perspective, in Railway Age’s April, 2017 issue addressed the paradigm shifts in the 4 core technologies that can greatly advance both the safety and the efficiency of railroads: 1) wireless voice to wireless data; 2) physical to virtual positioning; 3) mobile IT processing, e.g., locomotive borne, in addition to back-office; and the shift to an Enterprise IT Architecture (EITA) from conventional silo-based IT architecture. The example provided in the article as to advancing the first three technologies was the design of what I titled as Virtual CTC (VCTC) that my consultancy, Strategic Rail, LLC (SR) performed for the railroads of Egypt and Kazakhstan. Simply stated, by using virtual positioning, wireless data, and locomotive-borne IT processing, VCTC eliminates the extensive use of wayside infrastructure, e.g., track circuits, control points, and signals, and hence the avoidance of the substantial capital and maintenance expenditures. Additionally, VCTC can provide for both fixed and virtual block operation that can increase the throughput for a plethora railroads across the globe that unjustifiably have been financially and operationally held hostage to the fixed-block operation of conventional CTC.

While designing VCTC was an extraordinary experience for SR, deploying it would be even greater so, of course. Such is the case with 4Tel, an Australian supplier whose Managing Director, Derel Wust, presented its Virtual Block Traffic Control System at the Next Generation Train Control conference in Philadelphia on October 20, 2017. This system is deployed in revenue service on 1,400 miles of the NSW Country Regional Network railroad in Australia.

Mr. Wust’s presentation also included an Artificial Intelligence (AI) perspective for future operations that can eventually lead to the on-board platform driving the use of proactive resource management systems elsewhere, e.g., wayside, back-office, and mobile platforms. Such a perspective requires the 4th core technology, EITA, which eliminates the duplication in the generation, storage, processing, and distribution of critical data to optimize efficient and safe operations. The passenger airlines have demonstrated the value of EITA for truly scheduled operations for years.

Lastly, as to the 4 core technologies’ paradigm shifts, I quote Mr. Wust that the future of railroads is about Smart Trains & Dumb Tracks. As AI technology matures, this paradigm shift will see available dollars invested into AI-based, on-board locomotive systems and away from signaled track systems as a more effective way to move trains safely, economically and efficiently.

Management Paradigm
Until this past March I had little expectation that the conventional “crisis management” practices of Class Is would be challenged by any railroad to pursue actual scheduled operations. It was then that Hunter Harrison became the CEO of CSX to implement a major management paradigm shift to Precision Scheduled Railroad (PSR) based upon his past experiences at CN and CP. With out any detailed knowledge of PSR, but by using my perspective of truly-schedule operations that I have been promoting throughout my consulting career, I see 3 levels of truly-scheduled operations: 1) Internal; 2) Industry; and 3) Enterprise of which the first and possibly the third are being addressed by CSX.

Internally, I expect that CSX is attempting to optimize the schedule of its trains that stay within its own network. Those trains service the majority of its shippers, and hence arriving at a balance of increasing satisfactory customer service while decreasing dwell time and increasing average speed cannot be accomplished quickly. Arguably, to do so is more of an art than a science at this early stage of PSR. Additionally, there are major constraints to how effective PSR can be that are not within the control of CSX, as follows.

Industry-wise, the leading question is “How can a railroad run to schedule if the railroads with which it interconnects are not operating to schedule?” What would seem to be a very obvious observation, the point is rarely mentioned regarding scheduled operations in general, and PSR specifically. In fact, individuals from other railroads that are make disparaging comments about PSR, especially in its infancy, don’t realize that they are likely part of the problem given their lack of truly-scheduled operations. As to an industry perspective of truly-scheduled operations, the requirement for EITA is critical as well to ensure the efficient exchange of data as to what each railroad is doing relative to interchange. Actually, EITA and supporting technologies are relatively simple, but impossible to achieve until the primary railroads buy into truly-scheduled operations. This is an industry politics issue that perhaps could be best addressed, I believe, if all railroad top executives were paid bonuses based upon the efficiency of interchange.

From an enterprise perspective, running to schedule requires that the management of the primary operating resources are in sync with the actual train lineup, i.e., the schedules are in place for each primary asset, e.g., track time, locomotives, crews, yard tracks, and rolling stock. This means, for example, that there are no excessive pools of locomotives, and that crews are properly aligned with minimum deadheading. This also means that trains may run short based upon customer service performance. Granted, excess resources (referred to as “slack resources” in mathematical terms) are required when exceptions occur, e.g., derailments or weather. BUT, the slack resources required to handle exceptions in truly-scheduled operations are substantially less than those that are required for crisis management. To do so requires that management must consider the cost of excessive slack resources, e.g., locomotives @ $2.5 million each, excessive crew rest and deadheading, the cost of poor customer service, etc. These are costs that are not now being considered, I believe, by conventional railroad management, and thereby greatly affect the Operating Ratio of railroads. It is this point where a paradigm shift in rail management can really pay off, partially by delivering an EITA and the associated changes in the major resource management systems.

In closing, to effectively make the paradigm shifts in technologies and management require a unique discipline that is unlikely to be found in the U.S. freight railroads. I refer to strategic technologists as opposed to the current technicians that are not held accountable to the railroad’s bottom line for what they deploy. Strategic technologists are required to advance the railroad’s operating and market strategies in sync with a technology strategy. That syncing is not the case today for the Class Is individually, and certainly not as an industry.

Teddy Bears Revisited: Practical Technology Solutions

It is time for me to revisit my Teddy Bears” (TBs) postings on this blog in 2010. TBs are those perspectives / beliefs stated by railroaders, suppliers, and regulators to rationalize they are doing the right thing in their respective roles. However, when viewed objectively by individuals without any financial or organizational conflict, e.g., independent consultants, there are some significantly different viewpoints (alternative facts for those Trump supporters). But, these alternative facts are objective, actual facts.

Following this first TB revisited posting below regarding Practical Technology Solutions, I will be making additional postings as to Railroads: Individually vs. Industry, Suppliers: U.S. vs. International, The Customer Perspective, Pragmatic Scheduled Operations, The Regulators, Rail Operations; Domestic vs. International, Railroad Mathematics, Rail IT Architecture, PTC: What IT Is & What It Isn’t, and others that I may think of as time passes. I welcome your TB suggestions for my consideration.

PRACTICAL TECHNOLOGY SOLUTIONS
Being good at technology engineering does not necessarily make for being a good engineer when the bottom line is considered. There are several such examples in the rail industry that is still evolving from century-old technologies, e.g., track circuits, across much of the globe including the U.S. Arguably, the most telling and pathetic example is what the Interoperable Train Control (ITC) committee did in their development of an interoperable PTC system to address the Federal mandate of 2008. Below, I identify 4 primary issues in which ITC really failed each as to the lack of practical engineering in advancing PTC.

• The ITC designed an on-board positioning component to provide an accuracy of 18cm with 10-9 accuracy. Really! 7 inches with a risk of failure that will not occur in my lifetime? I assume this was based upon some vital track circuit / control specification developed over the ages. PTC is not vital in that it does not generate movement authorities and therefore does warrant such accuracy. In my rough estimation, this specification, if deployed, would raise the price of the component from $15,000 to $40,000 in my opinion – an unnecessary capital investment of $500 million plus ongoing maintenance for 20,000+ locomotives across the industry. I do understand that at least some of the Class Is have rejected such an over-engineered component, even though their collective technicians designed such.

• The monitoring of Intermittent Signals (ISs) were at least initially included in the specification. I don’t know where that stands now. However, with one estimate of 35,000 ISs across the industry at one point at perhaps at a price of $25,000 per installation, this would amount to another additional investment of $875 million plus ongoing maintenance with no added PTC or CTC value in that the Control Points are being monitored by PTC.

• A 220 MHz wireless data network is being installed without having performed any practical data modeling on what is really required for PTC, and without consideration of other technologies, including the 160 MHz network already in place. This was clearly a political move by NS and UP that had purchased the spectrum prior to and without knowledge of the PTC mandate. This amounts to a minimum $1 Billion unnecessary capital investment plus ongoing maintenance.

• Lastly, ITC did not involve the transits & commuter railroads in developing the interoperable operating rules. Hence, PTC as it stands could not prevent the recent in-terminal accidents where the passenger trains accelerated resulting in fatalities. Fortunately, this is a relatively simple fix via the use of GPS-fencing. The loss of life is already too much, and will only increase until PTC functionality is so expanded to consider the operating rules of transits & commuter railroads.

There are 4 primary technologies that should be addressed in a practical fashion as to their individual paradigm shifts within the last 2 decades that can advance both the safety and efficiency of railroads, as follows:

Communications
The U.S. railroads have been forced to install wireless data networks given the PTC mandate. Without that mandate, only a few railroads would have moved forward on their own with any urgency due to the lack of strategic wireless planning, both individually and collectively as an industry. Simply stated, knowing where the trains really are within a block (rather CTC or Dark Territory) AND the train’s speed is an absolute requirement for optimal “proactive traffic management” for medium to high density corridors, versus the crisis management that exists today given the lack of truly-scheduled operations. And, only wireless data networks can provide the necessary data for those traffic corridors. However, as noted above, the 220 MHz decision for PTC was poorly decided/forced for political purposes rather than functional / technical / economic reasons.

From a long term, strategic perspective, what are the railroads doing to take the most advantage of this wireless data infrastructure now that they have it, both individually and collectively as an industry? I expect little at this point.

Positioning
For the last century, track circuits have provided the necessary positioning information as to track occupancy/vacancy for train movement integrity for most of the railroad operations across the globe. Interestingly, 1/3 of the U.S. freight trackage, referred to as Dark Territory, does not use track circuits but rather communications between the train crew and dispatcher that uses a train sheet (now computerized- referred to as “conflict checker”) to manually determine occupancy / vacancy of track allocations. Now, with virtual positioning, e.g., enhanced GPS, those track circuits can be eliminated for the majority of railroads with the availability of wireless data and “vital” back-office traffic control software (which is akin to the conflict checkers used for Dark Territory) . It was with this practical engineering point in mind that my consultancy designed Virtual CTC (VCTC) for the railroads of both Egypt and Kazakhstan. There is at least one U.S. supplier that can deliver a VCTC-type system currently. But, don’t look to traditional CTC suppliers, in Europe especially, to provide such systems in that there would be a substantial loss in their revenues given the avoidance of wayside infrastructure required for CTC & ETCS-L2, as well as the on-going maintenance.

Traditional CTC engineers will argue that there will be the loss of broken rail detection / protection with the elimination of the track circuit. However, consider the following points. First, there are other technologies that can provide for such detection / protection, most notably the advancing fiber optics based systems as offered by at least Frauscher (www.frauscher.com). Second, many railroads across the globe do not consider broken rail detection / protection to be a necessary requirement for their railroad. Third, in the U.S., 1/3 of the freight trackage is Dark Territory and without track circuits. Hmmmmm!, FRA hypocrisy at work.

IT Processing
Since the 1970s, the IT processing platforms have advanced from mainframe to client/server to the cloud. But, what is still missing is that of the Mobile Node, i.e., the locomotive-borne IT platform. PTC has now established that for safety reasons, but with only limited expansion in to business applications, e.g., locomotive engineer performance. My development of the first overlay PTC was designed as a mobile node to address the shortcoming of BNSF’s ARES system back in the 80’s that provide limited PTC functionality via the back-office system. ARES’s design was highly susceptible to wireless data issues as to reliability and throughput. But then again, BNSF was constrained by on-board technology at that point. We are now past that with PTC, but where is the strategic perspective to take advantage of that mobile node as to customer service, dynamic work order, car monitoring, train diagnostics, track diagnostics, schedule performance, etc.?

IT Architecture
All railroads operating since the 70’s unquestionably have a Silo based IT Architecture (SITA), i.e., systems developed on an individual department by department basis without effective data interaction between the department’s systems. Certainly, SITA was justified with the introduction of the main frame computers at that point. However, SITA results in the duplication of data collection, storage, processing, and distribution of critical operating and administration data. This duplication results in both inefficient and unsafe operations. What is needed instead is an Enterprise IT Architecture (EITA) for the railroads, both individually and collectively as an industry.

My consultancy developed the first known design of a generic railroad EITA. This was done for Kazakhstan’s railroad, KTZ, that eliminates the tremendous duplication in the handling of data classes by disparate systems. EITA is Based upon a Single Source of Truth (SSOT) concept of designating singular data processes for generation of critical data. The classic approach to designing an EITA is referred to as Business System Planning (BSP) as first introduced by IBM in the late 60s (management consultancies have their own versions, but the basics are the same). The BSP process is very logical, but intensive, and it requires a firm commitment by upper management to participate because it takes on the individual departments’ IT fiefdoms. For further insight on EITA, I suggest my August 21, 2016 posting “The Market for EITA” on this blog in the “Railroad Business” category of postings on the right side of the Homepage.

For the U.S. freight railroads, it is critical that the EITA be extended to an industry level given the substantial amount of interchange between railroads. Simply stated, individual Class Is cannot run to schedule if the connecting railroads are not operating to schedule. To do so requires an efficient and timely exchange of operating status. That interchange of data does not effectively exist today due to both technical reasons as well the lack of truly scheduled operations by the individual Class Is.

So! Considering the ITC situations noted above, should the railroads continue to rely on their engineers for technology advancement given the lack of a bottom line perspective? Clearly, the answer is NO!  Also, the solution is not to look to many of the traditional suppliers because advance solutions can lead to reduced revenue due to lower capital investment and reduced on-going maintenance.

The answer to truly advance the safety and efficiency of railroad operations is to employ Strategic Technologists that can blend economics (business cases) with technology advancements to address specific advanced operations in a practical fashion. Such individuals are not employed now by railroads to my knowledge. Interestingly, the Class Is hired hordes of MBAs with the passing of the Staggers Act in 1980 to deal with the deregulation of freight railroad marketing. But now, it is well passed the time to bring in MBAs to address the practical tactical and strategic deployment of advancing technologies. For further insight, I suggest reading the article “Six IT decisions Your IT People Shouldn’t Make”, Harvard Business Review, November 2002, and substitute “Wireless” for “IT”.

In closing, I offer a suite of courses regarding Railroad Immersion (rational railroading basics), PTC, Advanced Traffic Control & Management, and Enterprise IT Architecture that address the spectrum of points noted above. These courses have been used by railroads and suppliers alike, both in the U.S. and internationally. A PDF brochure is available upon request. I am best reached at comarch@aol.com for comments and questions.

Freight Railroad Management Paradigm Shift

As a Strategic Technologist (syncing a business strategy with a technology strategy), I have focused for the last 2+ decades on the opportunities for railroads to advance both the safety and efficiency of their operations given paradigm changes in the core technologies that are required to improve both the safety and efficiency of freight railroads. Specifically, I refer to communications, positioning, information processing, and IT architecture. However, I have done so with relatively little expectation in my professional career that I could influence the conventional railroad operations practices of “crisis management” that prevent scheduled freight operations. Little had I expected that U.S. freight railroads would progressively pursue scheduled operations within their individual boundaries, yet alone as an industry given the high level of interconnection, e.g., how does a railroad run to schedule if the interconnecting railroads are not operating to schedule? One of my favorite telling comments that I consistently make is that Operations executive bonuses should be substantially, if not primarily, based upon interconnection efficiency. Expectedly, that comment has not been well received, but such financial motivation could greatly improve the efficiency of railroads, both individually and collectively as an industry. One notable exception has been that of Norfolk Southern (NS) with its advance traffic control and management systems. But, as far as I can tell, the remaining Class Is have yet to make significant changes given their conventional management mindset that it is all about running long trains and/or reducing crew starts, but at the price of inefficient use of primary resources, e.g., locomotives and crews. BUT now, there is now a potential of a paradigm shift in rail management that can be hopefully synced with core technology paradigm shifts. This is a paradigm transition from “crisis-based” management to “pragmatic” scheduled operations.

SCHEDULED OPERATIONS
Scheduled operation is seemingly a simple concept to understand, i.e., there’s a lineup of train movements. But, that lineup is quickly corrupted with the poor handling of supporting resources, e.g., track time, locomotives, crews, maintenance, derailments, customer pressure, and of course the lack of reliability in the interchange with foreign trains. Consider the following example.

About 6 years ago I was engaged by the VP Operations of a Class I to determine why there was excessive crew deadheading and rest. Within 3 days the primary reasons were clear. Arguably, the most obvious was that Yard Masters were initiating trains on the line-up without any follow through to ensure that many of trains would actually run. The phrase used by Crew & Locomotive Management was that there were “ghost trains” that they had to continually challenge before assigning their respective resources. However, the amazing finding was that Operations stated that they couldn’t run to schedule because several of their major shippers scheduling their trains.. What Operations fail to accept is that those shippers were doing so because they couldn’t rely on the railroad to meet their requirements. For Operations, this was their excuse as to why they couldn’t run to schedule. But the truth is that the railroad’s failure to maintain schedule had forced the shippers to make such demands. Simply stated, Operations was at fault.

With the exception of the interchange issue noted above, passenger airlines are confronted with the same resource management issues as freight railroads, and yet they operate quite well to schedule, weather permitting. So! What permits the airlines to operate to schedule versus U.S. freight railroads? I will address that point below, but first it is fair for you to question what the big deal is about operating to schedule? The answer to that question is quite simple as to concept, but not achievable without the proper management mindset and supporting technologies.

Running to schedule means that the management of the primary operating resources are in sync with the train lineup. That means from a railroad perspective that the schedules are in place for each primary asset, e.g., track time, locomotives, crews, yard tracks, and rolling stock. This means, for example, that 1) there are no excessive pools of locomotives, 2) crews are properly aligned with minimum deadheading, etc. This also means that trains may run short based upon customer service performance. Granted excess resources (referred to as “slack resources” in mathematical terms) are required when exceptions occur, e.g., derailments or weather. BUT, the slack resources required to handle exceptions in scheduled operations are substantially less than those that are required for crisis management. This means that responsible management must consider the cost of excessive slack resources, e.g., locomotives @ $2.5 million each, excessive crew rest and deadheading, the cost of poor customer service, etc. These are costs that are not now being considered, I believe, by conventional railroad management; these are costs that greatly affect the Operating Ratio of railroads. It is this point where a paradigm shift in rail management can really pay off. VOILA! Enter Mr. Hunter Harrison with a “top down”, integrated management perspective instead of a fragmented rail department by department perspective of conventional freight rail operations predominate in the U.S. freight railroads.

RAIL MANAGEMENT PARADIGM SHIFT
In March 2017, Mr. Hunter Harrison became the CEO of CSX. To the limited extent that I have tracked his career and operational philosophy at CN and CP, this is an individual with an unprecedented perseverance that can revolutionize CSX’s operations to pursue pragmatic scheduled operations. However, to do so involves 2 primary perspectives, i.e., 1) within an individual railroad’s boundaries, and 2) addressing the industry perspective of scheduled operations given the extensive interconnection with foreign roads that are not themselves operating to schedule.

INDIVIDUAL RAILROAD
Mr. Harrison is expected to drive CSX to execute an operations perspective as he did with CP and CN relative to CSX’s market not subject to interchange. However, to do so CSX will need to make some technology changes, most importantly Enterprise IT Architecture (EITA), as described in a previous posting on my blog, “The Market for EITA”, Simply stated, EITA minimizes the duplication in the generation, storage, processing, and distribution of data for the railroad’s operating systems. It is EITA that major passenger airlines have deployed to operate most efficiently as to scheduled operations.

U.S. FREIGHT RAIL INDUSTRY
As to an industry perspective of scheduled operations, the EITA perspective is greatly important as well to ensure the efficient exchange of data as to what each railroad is doing relative to interchange. Actually, EITA and supporting technologies are relatively simple, but unquestionably quite difficult to achieve until the primary railroads buy into scheduled operations as will undoubtedly be demonstrated by Mr. Harrison within CSX’s boundaries. This is a railroad politics issue.

BOTTOM LINE
With the appointment of Mr. Harrison as CSX’s CEO, I have never been more encouraged as to the possibility of U.S. freight railroads moving towards scheduled operations, both individually and as an industry. The technologies are available to do so, but the conventional operations’ mindset will have to make a major paradigm shift for several Class Is.

If you are interested in the above perspective, you can check out my article in the April, 2017 issue of Railway Age, titled “Enterprise Perspective” (pages 53-54). Also we can discuss further by contacting me at comarch@aol.com or 904 386 3082.

The Market for EITA

My Strategic Rail, LLC (SR) team recently completed a major study for Kazakhstan’s railroad, Kazakhstan Temir Zholy (KTZ) to develop an Enterprise IT Architecture (EITA). Simply stated, EITA is the next paradigm shift in IT architecture for companies / industries that can benefit by the integration of information flow between their current, disparate systems to eliminate the duplication of generating, storing, processing, and distributing data. Since I know of no current implementation of EITA by railroads, contrary to its common usage in other industries, EITA has a substantial, to-be-developed market for the majority of railroads across the globe. Additionally, there is also an interesting twist to the value of EITA for railroads that are government owned, specifically those railroads that have a Soviet heritage such as KTZ.

Kazakhstan is a member of the Commonwealth of Independent States (CIS), a regional organization that came about with the breakup of the Soviet Union. Hence, KTZ’s operating practices had been largely based upon the cookie-cutter procedures and operations structured by the previous Soviet regime. This meant that KTZ was Government-owned and self-contained as to health care, education, and overall welfare of the railroad’s employees; nothing Capitalistic there. However, that is no longer the case in that for the last decade or so KTZ has been making the transformation to a partially-capitalistic railroad where the rail infrastructure remains government owned, the personnel support facilities are shed to local governments, and the operations and resource management / maintenance are being transitioned to privately owned and operated. For such railroads, the use of an EITA addresses 5 issues as I see it: 1) Shift in IT architecture, 2) Deployment of Enterprise Resource Planning (ERP), 3) Advancement in Resource Management Systems based upon 4) integrating advancing technologies, and 5) Privatization.

  • IT Architecture Shift

As is the case for the majority of railroads across the globe in existence since the mid 20th century, they use Silo-based IT Architecture (SITA). That is, the systems used by the railroad departments are self-serving and developed independently of the other departments’ systems without constructive consideration of sharing data.  This fatuous perspective is now working against the benefit of the railroads overall, but again is typical for the 70-90’s time frame of IT integration with railroad operations. However, now is the time for transformation to responsible IT that looks at the railroad from an “Enterprise” perspective. That means accepting that no department is an “island” in that it is truly dependent on what is happening as to traffic movement, maintenance, procurement, etc. of the railroad overall. Additionally, as discussed further below, there have been paradigm shifts in the core technologies within the last decade that are now available to railroads to greatly improve the efficiency and safety of their operations. To explain this point from your own standpoint, consider how one operated prior to the availability of the cell phone initially and then with GPS and integrated information processing (intelligence). As such, so is the case for the majority of railroads across the globe that need to recognize the possibility of using such advanced technologies versus how they operate today based upon century-old technologies.

Pursuing an Enterprise perspective means making the transition to an Enterprise IT Architecture (EITA).  An EITA is an integrated information flow structure where key operating data (Data Classes) are independent of the Business Processes within the various departments’ systems. Referred to as Single Source of Truth (SSOT), each Data Class is generated by only a single Business Process and is made available to those Business Processes / Systems that require such data. The advantages of this approach are many including the following:

  • Elimination of the duplication of data generation, processing, storage, and distribution;
  • Assurance of data accuracy and timeliness to eliminate conflict across the railroad that can result in inefficient and unsafe operations;
  • Absolute accountability for data that are being used across the railroad;
  • The elimination, or modification, of Business Processes;
  • The simplification of adding advanced resource management systems without concern of generating the necessary data.

As demonstrated in the KTZ study, the process used to create an EITA is generically referred to as Business System Planning (BSP) and has been well proven since the 70s across many industries with the railroads, again, being a major exception. The engagement with KTZ to my knowledge is the first effort across the rail industry to move beyond the SITA mindset. A primary reason for this is that railroads have failed to make the business case to advance new technologies given their heavy investment in legacy systems and technologies, as will be explained below.

  • ERP Deployment

There has been a significant amount of attention lately as to the Internet of Things (IOT) as a means to generate enterprise knowledge from disparate data bases associated with disparate systems. Simply stated from my standpoint, IOT is a seemingly rational, but actually knee-jerk, attempt to make the most of the inefficiencies of a company’s SITA. These are companies / industries that don’t have the willingness or strategic foresight, to move towards the ideal of EITA. IOT will undoubtedly provide benefits, but it is only a bandage. What those companies relying on IOT require is the transition to Enterprise Resource Planning (ERP), which can simply be thought of as an overlay suite of resource management systems on an EITA. That is, the variety of management systems that may be deployed from an ERP perspective are facilitated by the integrated information flow that has been already established via an EITA structure.

 

  • Advanced Resource Management Systems

A basic management rule is that the more timely and accurate the data are as to the status of a company’s primary resources, the more efficient the operation will be with the proper management systems that can respond to the change of asset status, e.g., “What is the position and speed of trains which is not available today with conventional traffic control systems?”. For a railroad where the resources are mobile, the opportunities can be extraordinary, both as to efficiency and safety, if such “in time” data (not necessarily “real time”) are available. Additionally, as to be expected with many railroads across the globe, there is likely to be a tremendous amount of manual capture of asset status, e.g., locomotives, wagons, and marshaling yard status. The deployment of systems that provide such data automatically e.g., wagon tracking systems, can greatly reduce the costs of manual collection while providing more accurate and timely data.  However, the primary resource management systems that exist today across most railroads are not geared to handle such data.  Therefore, improving the reporting of asset status has to be integrated with advanced resource management system to handle such data. That means that there has to be an honest assessment as to how such advanced management systems can be integrated or as a replacement for current, conventional management systems. The usage of advanced resource management systems is largely dependent upon advancing the core technologies.

  • Core Technologies

As with the cell phone reference above, how can railroads change their operations accordingly? That is, there are 3 primary core technologies that a railroad requires to manage its mobile resources: Positioning, Communications, & Information Processing. For railroads, their operations are largely based upon century-old versions of the 3, i.e., physical positioning, voice communications, and a mixture of wayside and back-office information processing (intelligence). Unfortunately, most railroads have not yet considered the advancement to wireless data, virtual positioning, and locomotive-borne intelligence respectively.  For example, I recently completed another assignment for KTZ, as well as several years earlier for Egypt’s railroad (ENR), to design an advanced traffic control / traffic management / enforcement system (prevents train accidents due to driver errors). This concept that I refer to as Virtual CTC (VCTC) replaces the century-old physical positioning of where trains are with virtual positioning, thereby greatly eliminating extensive capital expenditures and on-going maintenance for the conventional positioning approach. Additionally, wireless data communications are used in lieu of voice communications, and the primary intelligence is shifted from the wayside to both locomotive-borne and back-office platforms. A version of VCTC has now been implemented by at least one supplier.

  • Privatization

KTZ is making the phenomenal transition from exclusively Government-owned to a capitalistic perspective of Government-owned infrastructure and privatization of supporting operations such as maintenance of railroad infrastructure and the handling of freight and passenger operations. This is a transition that would be valuable for many railroads that are government owned today. The overlay of ERP on an EITA provides an honest presentation of what’s what across the railroad that will result in the improvement of both the efficiency and safety of the railroad as well as financial and operations accountability required by investors.

A public version of the EITA study that I performed for KTZ is available upon a request to me at comarch@aol.com.

Rail-izing Positioning

Having lived in New Orleans (NOLA) for nearly a decade, I adopted the “positioning” methodology used by locals for locating a bar/restaurant/whatever in that crescent shape street infrastructure that romances the curve of the Mississippi. With such a fan-shape set of cross streets, one could not really use the North / South & East/West terminology that makes sense in cities with a rectangular street infrastructure. Rather, the folks in NOLA refer to a bar/restaurant/whatever as being Uptown or Downtown & Lake side (Pontchartrain) or River side (Mississippi) of the particular street. And, for many it seems, this is easier to remember and explain when jumping into a cab during a night of New Orleans’ revelry.

 

In the railroads, the positioning technology for tracking trains for a century or so has been to define the “block” of the track infrastructure occupied by the train without any accuracy of where in the block the train resides or at what speed it is traveling. And, unlike the case for NOLA folks, this positioning methodology doesn’t make sense anymore as railroads look for more capacity out of their current infrastructure. The railroad’s block perspective is due to the use of track circuits in conventional signaling operations for determining block occupancy. And even worse, roughly 1/3 of U.S. freight trackage does not even have track circuits for positioning – what is referred to as “Dark Territory” where the trains only “appear” to the dispatcher in spatial chunks of 20-40 miles when the train engineers  seek additional movement authorities.

 

Now, thanks to the U.S. Federal mandate of PTC, the railroads are required to implement a wireless data infrastructure. In my opinion this is the primary value of the mandate since PTC is far from being cost justifiable on safety benefits. Rather, PTC is a Godsend for railroads, whether they recognize it or not, because the mandate has forced the majority of railroads in the U.S. to make the transition to the digital age of wireless data that most Class I’s had been resisting due to the lack of a strategic technology plan aligned with a strategic operating plan, i.e., strategic railroading. But, what has yet to be railized by freight railroads is that the “virtual age” is upon them. Specifically, the use of virtual positioning technologies supported by the availability of wireless data can greatly reduce both capital and maintenance cost of railroad operations while significantly increasing the capacity.

 

The PTC mandate has forced the railroads to develop an accurate on-board platform that exceeds that of GPS alone.  The BAD news is that this component has been designed by technicians instead of technologists (who provide a bottom line perspective of the use of technologies) to far exceed the requirements for PTC. BUT, the good news is that this component provides the basis to make the transition from CTC to Virtual CTC (VCTC), both along the main line and in interlockings.

 

As presented in my previous posting on this blog, Railroads and the Virtual Age, VCTC means replacing physical block occupancy technologies, e.g., track circuits & axle counters, with virtual technologies that include an expansion of GPS with additional positioning technologies, e.g., tachometer, accelerometers, gyroscopes, GLONAS, etc., that are integrated via a Kalman filter (check Wikipedia) to achieve amazing, reliable accuracy even when GPS is not available in a tunnel, for example.

 

While a natural for mainline, VCTC’s capability with the addition of moderately accurate End-of-Train (EOT) positioning means that interlockings can use virtual technologies as well. After all, what is the real difference between mainline and interlockings? Answer: there really is not any difference that the proper use of technologies can’t resolve if technologists are involved.

 

BOTTOM LINE: The pursuit of VCTC, both along the mainline and in interlockings, offers freight railroads the opportunity to dump CTC. This is a fantastic opportunity for railroads as to both costs and efficiency if they can get their heads out of conventional operations. However, this is not good news for traditional CTC suppliers that benefit from the revenue of capital-intensive CTC infrastructure and the on-going extensive maintenance.

 

Welcome to the virtual age, you all. Even the NOLA folks have adjusted to virtual positioning (e.g., Google Maps), as we all have. But, they continue to use the uptown/downtown & lake side/river side description that is part of the charm of New Orleans. However, railroads don’t operate on charm. They operate on the bottom line, and VCTC along the mainline and in the interlockings is the future.

Shaken! Not Stirred

About 20 years ago there was a cartoon in The New Yorker, a monthly periodical best known, arguably, by non- New York City residents for its cartoons.  This cartoon showed two wealthy gentlemen (in the style of the Monopoly game millionaire) lounging in the bar car of a passenger train with their martinis. (I think of them as Reginald and Wilfred).  Reginald states:  “This is a lousy martini. (pause) This is a Hell of a way to run a railroad”.

Being a martini enthusiast (only gin of course),  I can appreciate the nuance of making such an evaluation.

Back then, this now-shallow perspective was in actuality one credible way to evaluate passenger and freight rail operations in that it was “take or leave it” from the railroads’ perspective of running their railroads. That is, railroads provided the service that they wanted to provide given their monopolistic position as to transport.  However, beginning with the availability of the interstate roads during the Eisenhower administration, followed by the passing of the Staggers Act in 1980 that deregulated the freight railroads as to the price that they could charge for services, there was a gradual, but sustained shift to the customer’s perspective. That is, with these two major game changes of the interstate road infrastructure and the Staggers Act, entered competition not only between rail and truck transport, but also competition between railroads.

In the last several decades, both passenger but primarily freight railroads have taken on a different perspective; a perspective on what technologies can deliver to make a railroad’s operation both more safe and efficient. I must state first of all, that US railroads, both passenger and freight, are extraordinarily safe, especially when compared to operations across the globe. (See previous posting “ What Price Safety” for some additional insight on this point.  But, I need to go back to the martini point.)

There are martinis, and there are martinis. James Bond’s infamous standard of “Shaken, not stirred” makes the point. But first, I should note that based upon an independent analysis of literature regarding James Bond’s life style, it has been determined that he was quite a drinker with his consumption of an average of 45 martinis within a given week. OK, so that is 6 +martinis a night which makes him somewhat suspect as to his objective credibility as quoted by Dorothy Parker of Algonquin Round Table fame:  “ I like to have a martini, Two at the very most, After Three I’m under the table, after four I’m under the host.” So!  6+ martinis in an evening is clearly past the line.

The point of shaken, not stirred, can be applied to railroad operations, me thinks.  The difference between the two versions of martini preparations is that if a martin is shaken, then the ice can “bruise” the gin, where as stirred is like “Whatever, don’t mess with my gin.” Therefore, the parallel to railroads, you may ask, is that railroads have only been stirring their operational processes for the last several decades, at least, by simply upgrading their primary core technologies, i.e. communications, positioning, and IT, most noticeably with the shift from analog to digital, and the integration of distributed decision making platforms with the back-office infrastructure. But, railroads have not truly shaken up their business processes, a.k.a. process reengineering (dynamic work order is a good example), to take advantage of how the operation can change with advancements in technologies. Arguably, the most critical example is that of the management of train movements as to the underlying means of functional vitality (how movement authorities are generated) and the efficiency that an be achieved with more timely and accurate positioning of trains to advance from crisis-based fixed block operation to that of proactive, flexible block.

In this light, the passing of the Rail Safety Improvement Act of 2008 that mandates PTC deployment across most of the freight and transit rail operations in the U.S. has been both a blessing and a curse. That is, the PTC mandate is forcing the railroads to deploy an industry-based wireless data platform with mobile IT platforms on locomotives. That’s super. But, the over-engineering of PTC and the lack of technology strategy across the industry, has dampened the progressive advancement of business processes that can use these technologies.  Simply state, there is no business strategy in sync with a technology strategy, a.k.a. Strategic Railroading, in most of the railroads, yet alone with an industry perspective for freight operations.

So! Do you want to shake things up in your railroad – or your client railroads if you are a supplier? Or do you just want to stir the same old stuff, the same old processes, albeit with upgraded technologies? If you want to shake things up, then consider what can be done with virtual positioning and wireless data technologies.  For one example, click on the VCTC category on the right side on the home page of this blog and review the postings.

Finally, permit me to add my personal notes on gin. With my 46 years of legally enjoying gin across the globe, I offer my following evaluation of several:

  • Bombay Sapphire: a classic, a standard, not insulting to anyone.
  • Hendricks: Just too much rose – only good for 1 a month
  • Blue Coat: made in the U.S and excellent, but then again keep it down to several week if you drink your martinis dry.
  • Gibson: my favorite when in France – can’t find it in the U.S.

In the spirit of full disclosure, I should note that I wrote this posting while drinking wine only. Wine is for thinking and writing … and Martinis are for neither.

What Price Safety ?

On December 1, 2013, there was an accident on the Metro North Railroad (MNR) that resulted in 4 fatalities. In some 30 years of operation, this was the first accident on the railroad that resulted in passenger fatalities: quite a phenomenal record for any form of passenger transport. The source of the accident was the failure of the driver to reduce the speed of his train on a curve with the train flying off the track. The reason for his failure was, according to the driver, his dozing off.

There are actually two systems available on MNR to prevent accidents due to such driver errors with a third system due before 2016. However, neither of the current systems could be used by that given train on that given portion of track.  First, there is an alertness system that requires the driver to perform some action (e.g., touch a button) with a certain frequency (e.g., every 25 seconds) to silence an alarm and prevent an automatic brake application.  However, for this train that system was available in the locomotive in the front of the train, whereas the driver was operating from a position in the rear of the train. Second, unlike freight railroads that use wayside signaling, MNR (and many transits) uses cab signaling which in addition to knowing block occupancy and track divergence can include civil speed enforcement if such data is provided to the on-board platform. For that portion of track, there was no such data provided –that would have permitted the cab-signaling platform to enforce.  But, there is now.   Now, with the mandate to implement Positive Train Control (PTC), there will be a third enforcement approach that will prevent accidents due to driver errors including overspeeding anywhere along the track, passing the physical boundary of the movement authority, moving through misaligned switches, and entering a work zone without permission.

So! What price safety? Without any hard figures to back me up, my experience tells me the following:

  1. Alerterness systems are relatively inexpensive, but also somewhat limited as to safety value;
  2. Cab signaling is a no-brainer for transits. It is both a traffic control (versus very costly wayside signaling) and an enforcement system, although somewhat limited when compared to PTC.
  3. PTC is extremely expensive, but the most comprehensive in preventing accidents. However, as has been demonstrated by independent parties, the Cost / Value ratio of PTC across the rail industry is quoted at 20 to 1 for a 20 year period. However, my personal view is that the ratio is more likely 10 to 1 if the freight railroads’ technicians had not done such an irresponsible technical and functional overdesign of PTC (postings on this point are available by clicking on the PTC category on the right side of the home page.)

So! Perhaps a better questions is: Who should pay for a mandated system whose cost far exceeds its value?  In the case of the transits with both alertness systems and cab signaling there is another question that has not been answered to my knowledge: What is the true Cost / Value ratio for transits given that PTC provides incremental increase in safety given the use of alerterness systems and cab signaling?  This analysis would result in a higher Cost / Value ratio. And, does a government-owned entity really want to spend that kind of money for that incremental safety benefit?

Now, to the ridiculous of What price safety?  On the day following the MNR accident, I was contacted by CNN to see if I would be willing to be interviewed by Brooke Baldwin during her 2-4 PM show. They had interviewed me previously regarding the horrific train accident in Spain in July, also due to operator error as to overspeeding on a curved section of track. (As a side note, my colleague Dave Schanoes handled the evening show on CNN for both the Spain and MNR accident.) I was asked if I could discuss the use of seat belts on trains as well as federal regulation regarding train safety. After a silent gasp of “REALLY, you’re serious?”, I thought I was clear with them that I need not address the issue of seat belts, but surely no problem with the regulatory issues.  So! Guess how the 3 minute interview went.  The first question asked by Ms. Baldwin:  ” Ron, let’s just cut to it. Is it about time that we have seat belts on trains?”  With a smile I replied “That’s a very interesting point.” and went on to get the conversation back to a rational understanding that we run a safe railroad … and so on….  and that PTC is not justified.  Closing with “What cost safety?”  click here to see interview: cnn interview

Just as the mandate of PTC was a knee-jerk reaction by Congress to the Metrolink / UP accident in September, 2008, I have little doubt that there is some local, state, and/or Federal politician that would like to run with the seat belt concept.

 

THINK

When I joined IBM in 1970 as a Marketing Representative to sell computers, I was presented with a 10 inch plaque for my desk that simply stated “THINK”.  I still have that plaque on my desk.  Since that time of the commercial introduction of computers, corporate America has been proceeding through 3 stages of THINK as to their business environment. As addressed below, the U.S. freight rail industry has kept pace with the first two stages of Digital and Process Reengineering to a respectable extent, but the railroads have yet to fully embrace the 3rd stage, Connectivity, which is extremely critical for railroads to manage their primary reliance on mobile resources, both individually and collectively as an industry.

1: Digital

With the marketing of computers in the 70s, IBM realized that its first primary challenge was to educate its clients’ executives as to the opportunity to use computers to replace the straightforward processes that were handled by clerks, e.g., payroll, inventory update, accounts receivables / payables, etc.  These sequential processes of updating data bases were readily handled by the predominance of magnetic tape-based, sequential record data bases. THINK back then was how to make the business case for top-level management to lease these intimidating physical electronic monsters (purchase was not an option at that time with IBM).

 

To take on this challenge of converting manual (analog) processes to digital ones, IBM was hiring two basic types of disciplines, i.e., MBA’s and teachers. The former (which I was) were used to provide the business case, e.g., the discounted present value of advancing a business process, and the latter were used to present the business case.  With the phenomenal amount of Sales School training that IBM provided to its marketing personnel at that time, these two disciplines were blended to provide an unprecedented marketing force. We didn’t have PowerPoint, of course, but we were well trained on paper “flip chart” presentations that permitted us to efficiently make our “bullet” presentations to client executives.

 

As a side point, IBM’s Marketing Representatives were also trained on basic marketing/sales concepts such as

  • Shut up once you asked a question of the client so as to permit that individual to reach his / her own conclusion based upon what you had presented;
  • Once the executive agreed to the sale, you introduced no additional thoughts;
  • It takes 10 cold calls to close 1 deal;
  • Do not disparage a competitor directly. However, one could state demonstrated truisms, e.g., “Burrough’s computers perform 1/3 slower on your accounts receivables as demonstrated by the benchmark test that we performed with your data.” If you violated this principle, then it was very likely that you were soon on the street.
  • One never had alcohol at lunch  – unless the customer insisted, at which point you didn’t go back to your office or to that of your clients;  and
  • One dressed based upon the dress code of the customer – as long as it was a dark suit and a white shirt.

While IBM set the high water mark for ethical behavior in the Data Processing industry (the phrase for Information Technology back then), if not elsewhere, there was no question as to the benefit of such behavior including a most important advantage that an IBM business card would get you pass the secretary of almost any executive. Those were the good ole days, in that marketing was above board. Again, an IBMer would be fired immediately if s/he violated IBM’s sense of business ethics; ethics that were and are still unmatched in the US business (and political) environment in my opinion.

At this point in time, THINK was more about hardware than it was about software. Within a decade or so, the perspective of THINK advanced to Stage 2 with the transition from sequential tape processing to that of dynamic, direct access to data via affordable disk drives and the associated advancement in software.

2: Process Reengineering

For the last several decades, the concept of THINK has been all about functional understanding of what a business process is attempting to achieve. Some readers may recall the rush to Process Reengineering in the 90s. Simply explained, process reengineering meant reTHINKing how processes were handled as to workflows given the use of computer processing and wired telecommunications that integrated otherwise disparate entities in a company. This was a holistic perspective of the company and, in selected cases, an industry. However, the ability to reengineer processes was most often directly related to the ability to use wired communications between the sub-entities for the purpose of distributed, but integrated processing. However, for industries that are primarily about managing mobile resources, e.g., railroads, process reengineering was greatly limited in that a wired path can’t be attached to a locomotive. As a side point, IBM had developed an extraordinary concept of Business System Processing (BSP), a.k.a. Information System Processing (ISP) that proceeded process reengineering by 2 decades to optimize data storage. I have a posting on BSP that can be found by clicking on the category of Strategic Railroad on the right side of the home page and paging down to It Takes an Industry: Process, April 14, 2012.

3: Connectivity

With the ubiquitous availability of wireless data networks now, whether commercial or private, the 3rd state of THINK now also includes who “THEY” are that are involved in the functionality. This is an issue of connectivity, with a minor in functionality. For railroads this means tightly integrating the management of its trains, crews, locomotives, and maintenance with the back office systems based upon a very simple principle: “Where are my trains (I mean really where are trains other than just a block), AND at what speed are they traveling. This is all about running a truly-scheduled operation. The ultimate, but largely unachievable, example of this is moving block. But, short of that is the role of Proactive Traffic Management (PTM) that minimizes the consequences of traffic conflicts in dense corridors, and that can support “flexible block” operations versus the inefficiency of fixed block operations with traditional CTC operations. I have a posting on PTM that can be found by clicking on the category Strategic Railroading on the right side of the home page, and paging down to Degrees of Separation, December 26, 2012.

 

With the mandate of PTC, the freight rail industry has been forced to develop an industry-wide wireless network, which is clearly the true value of the PTC mandate given that our freight railroads are already extraordinarily safe. For those individuals that are still confused about the business benefits of PTC, please, please understand that PTC does not deliver business benefits. It is the availability of a wireless data network required for PTC implementation that can provide those benefits – as evidence by NS and BNSF, at least, that are achieving those fatuously proclaimed PTC benefits by some misguided individuals without the implementation of PTC.

An article of mine is scheduled to be published in the forthcoming C&S issue of Railway Age, and it will describe the pursuit of this stage, not just from an individual railroad standpoint, but also as what can be done to increase the efficiency of the U.S. freight rail industry. The underlying principle here is that a railroad is limited to its ability to run to schedule if the railroads with which it interconnects are not running to schedule, and visa versa.  In my opinion this Catch 22 can best be resolved by 2 means. First, railroads require PTM (with a glazing of flexible block), and Second, the annual bonuses of railroad executive must include a performance measurement as to Industry Efficiency. However, it is unlikely that the pursuit of industry efficiency will happen until there is a true Strategic Industry Railroading perspective that involves all of the Class Is.  So! Who will provide that industry strategy?  Hmmmmmm! It appears that there is a role for an independent consultant. Please call: (904) 386 3082.

Innocence Lost: Rail Operations

In the previous posting on this blog, I wrote about the Innocent Lost of Engineers, meaning that with the introduction of the commercially-available, hand-held digital calculators in 1972, engineers began to lose their ability to approximate solutions for a series of calculations with various powers of ten involved.  For example: engineers of that generation could quickly determine that 3.936 X 44,888 / 1,987 is somewhere in the range of 4x(90×500)/(4×500) …hence … 4×90/4 … hence …  90. Such capability was an art that complemented the use of the now-obsolete slide rule, an analog calculation device that performed multiplication and division by literally sliding sticks ruled with logarithmic scales. This lack in the skill of approximation for engineers not experienced with the slide rule is unfortunate because it is critical for thinking on one’s feet to obtain answers to move through complex situations efficiently, albeit not accurately. I also believe the ability to approximate solutions adds greatly to one’s level of creativity. Unfortunately, engineers of today feel compelled to deliver exactness limited by the number of digits displayed on their digital device. Their answer for the above problem would be 88.91754806240564…

Considering railroads, I see a significant lack of creativity with the current set of primary technicians across the industry as to their inability to “think outside of the boxcar, if you will. A case in point here is the pursuit of PTC in the U.S. where technicians are designing to extreme levels of exactness and capability that are clearly not warranted (see posting The Goods, The Bads, & The Uglies, March 5, 2013  found by clicking on the PTC category on the right side of the home page).

Now, I suggest that railroad operators are in the process of losing their innocence as well as to how they run their railroads. Fortunately, however, this is a good thing. Instead of operating a railroad as they have in the past to satisfy their own perspective of what a railroad is, i.e., take it or leave it, railroads are focusing now on customer service for the benefits of their own bottom line as well as that of the shippers by improving customer service. This customer / bottom line perspective started to evolve in the 80s as railroad executives began to recognize the increasing amount of freight traffic being captured by the trucking industry via the nationwide interstate road infrastructure. As a subject for a posting in the future, this was the genesis of the intermodal industry that has now replaced coal freight revenue as the top source of revenue for several Class I railroads.

As to operators losing their innocence, I see 4 phases that will permit them to eventually maximize the use of their resources while delivering optimal customer service.

  1. Resource Rationalization
  2. Scheduled Operations
  3. Proactive Resource Management
  4. Industry Management Perspective

Unfortunately, as explained below, most of the major U.S. railroads have only managed to achieve the first phase of resource rationalization in the last 2-3 decades. Too few railroads have begun to pursue the 2nd phase of scheduled operations, yet alone the 3rd phase of proactive resource management, and certainly not the 4th phase of industry management perspective.

1.    Resource Rationalization

This phase began with the signing of the Staggers Act in 1980 that deregulated the freight rail industry in the U.S. This act introduced competition to the freight rail industry by removing the role of the now-defunct Interstate Commerce Commission (ICC) that regulated the tariffs for freight services. This first phase was managed via the infusion of MBAs in the railroads that struggled to work within the efficiency constraints of conventional traffic control systems and the associated operating processes. Such constraints included being confronted with the mindset of operators that fatuously believed that running a railroad without a true schedule was a test of their management skills. That is, a train schedule was something that was handed down to them by the ivory tower Service Design department staffed by MBAs, as “wouldn’t this be a great way to run a railroad”. But, a true operator was not being measured by such performance, but rather by his ability to work with conflicts as they occurred in traffic movements. Hence, what the MBAs provided at that point was limited to an analysis of contribution of individual rail corridors as to the railroad’s bottom, although that analysis was based upon non-scheduled operations. The result of their efforts was the shedding of rail corridors with less than acceptable performance. Unfortunately, the other primary assets, e.g., locomotives, rolling stock, crews, yard operations remained untouched as to their inefficiencies.

2.    Scheduled Operations

The railroads are now into the second phase of losing their innocence with the advancements in technologies, most importantly wireless data an virtual positioning, that can provide for more timely and aggressive handling of train movements by simply knowing where the trains are AND at what speed they trains are traveling. For most railroads in the U.S., they have only begun the process of deploying the necessary wireless data networks that can provide such data. It should be understood that this wireless deployment is not due to a strategy on the part of most railroads, but rather it is a deployment due to the Federal mandate to implement PTC, a system that requires a wireless data network.  I dare say that without that mandate, a number of railroads would still not being deploying such data networks due to a lack of operating strategy linked with a technology strategy (a.k.a. strategic railroading). For example, to my knowledge only 2 railroads in the US had such a strategy before the mandate to deliver the data required to improve the efficiency of their crisis-based dispatching processes.

 

With this additional level of timely and accurate train position and speed data, the challenge of efficiently dispatching trains increases beyond the mental capability of any dispatcher to deal with all of the variables in dense corridors. One should understand that effective dispatching until this time had been an art based upon not only the mental capabilities of the dispatcher, but also by his/her degree of experience with a particular corridor. And, based upon the principle that one can not effectively manage dispatching if one cannot measure the efficiency of dispatching, then I suggest that no major railroad had, and perhaps has, any effective measurement technique as to the efficiency of its dispatchers. Maybe, they think they do, but most likely it is based upon the conventional concept that a dispatcher should not make the same mistakes that s/he made yesterday, or the day before, or the week before, whatever.

Operating to schedule is not just about track time efficiency. Class Is are beginning to realize that the ability to run to schedule can result not only in better customer service, but also in a substantial reduction in the “slack resources” (a mathematical phrase when optimizing operations) that sit idle so as to permit some level of efficiency when locomotives are not where they need to be … or train crews outlaw … or the designated yard has insufficient in-bound tracks, etc. Simply stated, the unstructured inefficiency of depending upon the use of slack resources in a crisis-based, truly non-scheduled fashion is substantially greater than running to a schedule where slack resources are kept to a minimum to handle a substantially less level of conflicts when the schedule is corrupted…which is more the case than not.

3.    Proactive Resource Management

This next phase is that which only 2 Class Is to my knowledge have taken on. I introduced PTM a decade ago based upon a very simple construct. That is, in order to minimize conflicts of mobile assets, then wireless data is required to provide the timely and accurate data of where those assets are AND at what speed they are traveling.  With such information, then mathematical planners (basic algebra) can be used to predict where conflicts will occur. With that knowledge, then Operations Resource (OR) tools can be used that identify objective functions to minimize the consequences of those conflicts. For example, an objective function may be to reduce the travel time, or to maximize train velocity, for the set of trains being considered for a particular corridor, or for a set of corridors. Conventional CTC that is used across 50% of the U.S. freight rail trackage can only provide block occupancy with no knowledge of speed. For example, did that intermodal train come to a stop, and therefore the opposing merchandise is train being held on a siding for no reason? The other 50% of the freight trackage is dark territory where the dispatcher doesn’t even know which the block the train is in, yet alone the speed. Simply stated, PTM provides for flexible block operation (which is far short of the complexity, if not the questionable possibility of moving block) instead of the inefficiency of fixed block operation where trains vary significantly in length and speed. For further information on PTM, I suggest you read the posting Degrees of Separation, December 26, 2012 in the category Railroad Business found on the right side of homepage.

 4.  Industry Management Perspective

There  is a 4th  phase, which has yet to be initiated, that addresses the efficiency of the industry, and not just an individual railroad. The underlying point here is quite straightforward, but yet continues to be ignored. That is, given the substantial necessity of trains across U.S. railroads to operate within a specific region, yet alone to go from coast to coast, it is impossible to achieve the highest level of scheduled railroading if the interconnecting railroads are not running to schedule. So, there is a Catch 22 in that a given railroad cannot operate at its highest level of efficiency until the interconnecting railroads are running to schedule, but those railroads cannot operate to schedule until the given railroad is operating to schedule.

 

I see 2 requirements to break into this circular logic. First, the increasing use of PTM will narrow down the complexity of the interconnection challenges. Second, and most important, the annual bonuses of railroad executives need to be structured to place emphasis on industry efficiency, and not just the efficiency of their individual railroad.

 

Lastly, for the majority of railroads in the U.S., as well as for a number of low density corridors in the Class Is, there is still an issue of considering how wireless data, virtual positioning, and on-board intelligence (such as that being provided via the implementation of PTC), can replace their current dark territory and low density CTC operations with Virtual CTC (VCTC) as described in other postings, including videos, on this blog (click on the VCTC category on the right side of the homepage).

 

All of the above is really quite straightforward to understand, but the traditionalists of railroads have yet to grasp that a paradigm shift is available to them given a shift in the core technologies that is available to them: again, wireless data, virtual positioning, and on-board intelligence.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop