Posts Tagged ‘Lindsey’

Shaken! Not Stirred

About 20 years ago there was a cartoon in The New Yorker, a monthly periodical best known, arguably, by non- New York City residents for its cartoons.  This cartoon showed two wealthy gentlemen (in the style of the Monopoly game millionaire) lounging in the bar car of a passenger train with their martinis. (I think of them as Reginald and Wilfred).  Reginald states:  “This is a lousy martini. (pause) This is a Hell of a way to run a railroad”.

Being a martini enthusiast (only gin of course),  I can appreciate the nuance of making such an evaluation.

Back then, this now-shallow perspective was in actuality one credible way to evaluate passenger and freight rail operations in that it was “take or leave it” from the railroads’ perspective of running their railroads. That is, railroads provided the service that they wanted to provide given their monopolistic position as to transport.  However, beginning with the availability of the interstate roads during the Eisenhower administration, followed by the passing of the Staggers Act in 1980 that deregulated the freight railroads as to the price that they could charge for services, there was a gradual, but sustained shift to the customer’s perspective. That is, with these two major game changes of the interstate road infrastructure and the Staggers Act, entered competition not only between rail and truck transport, but also competition between railroads.

In the last several decades, both passenger but primarily freight railroads have taken on a different perspective; a perspective on what technologies can deliver to make a railroad’s operation both more safe and efficient. I must state first of all, that US railroads, both passenger and freight, are extraordinarily safe, especially when compared to operations across the globe. (See previous posting “ What Price Safety” for some additional insight on this point.  But, I need to go back to the martini point.)

There are martinis, and there are martinis. James Bond’s infamous standard of “Shaken, not stirred” makes the point. But first, I should note that based upon an independent analysis of literature regarding James Bond’s life style, it has been determined that he was quite a drinker with his consumption of an average of 45 martinis within a given week. OK, so that is 6 +martinis a night which makes him somewhat suspect as to his objective credibility as quoted by Dorothy Parker of Algonquin Round Table fame:  “ I like to have a martini, Two at the very most, After Three I’m under the table, after four I’m under the host.” So!  6+ martinis in an evening is clearly past the line.

The point of shaken, not stirred, can be applied to railroad operations, me thinks.  The difference between the two versions of martini preparations is that if a martin is shaken, then the ice can “bruise” the gin, where as stirred is like “Whatever, don’t mess with my gin.” Therefore, the parallel to railroads, you may ask, is that railroads have only been stirring their operational processes for the last several decades, at least, by simply upgrading their primary core technologies, i.e. communications, positioning, and IT, most noticeably with the shift from analog to digital, and the integration of distributed decision making platforms with the back-office infrastructure. But, railroads have not truly shaken up their business processes, a.k.a. process reengineering (dynamic work order is a good example), to take advantage of how the operation can change with advancements in technologies. Arguably, the most critical example is that of the management of train movements as to the underlying means of functional vitality (how movement authorities are generated) and the efficiency that an be achieved with more timely and accurate positioning of trains to advance from crisis-based fixed block operation to that of proactive, flexible block.

In this light, the passing of the Rail Safety Improvement Act of 2008 that mandates PTC deployment across most of the freight and transit rail operations in the U.S. has been both a blessing and a curse. That is, the PTC mandate is forcing the railroads to deploy an industry-based wireless data platform with mobile IT platforms on locomotives. That’s super. But, the over-engineering of PTC and the lack of technology strategy across the industry, has dampened the progressive advancement of business processes that can use these technologies.  Simply state, there is no business strategy in sync with a technology strategy, a.k.a. Strategic Railroading, in most of the railroads, yet alone with an industry perspective for freight operations.

So! Do you want to shake things up in your railroad – or your client railroads if you are a supplier? Or do you just want to stir the same old stuff, the same old processes, albeit with upgraded technologies? If you want to shake things up, then consider what can be done with virtual positioning and wireless data technologies.  For one example, click on the VCTC category on the right side on the home page of this blog and review the postings.

Finally, permit me to add my personal notes on gin. With my 46 years of legally enjoying gin across the globe, I offer my following evaluation of several:

  • Bombay Sapphire: a classic, a standard, not insulting to anyone.
  • Hendricks: Just too much rose – only good for 1 a month
  • Blue Coat: made in the U.S and excellent, but then again keep it down to several week if you drink your martinis dry.
  • Gibson: my favorite when in France – can’t find it in the U.S.

In the spirit of full disclosure, I should note that I wrote this posting while drinking wine only. Wine is for thinking and writing … and Martinis are for neither.


When I joined IBM in 1970 as a Marketing Representative to sell computers, I was presented with a 10 inch plaque for my desk that simply stated “THINK”.  I still have that plaque on my desk.  Since that time of the commercial introduction of computers, corporate America has been proceeding through 3 stages of THINK as to their business environment. As addressed below, the U.S. freight rail industry has kept pace with the first two stages of Digital and Process Reengineering to a respectable extent, but the railroads have yet to fully embrace the 3rd stage, Connectivity, which is extremely critical for railroads to manage their primary reliance on mobile resources, both individually and collectively as an industry.

1: Digital

With the marketing of computers in the 70s, IBM realized that its first primary challenge was to educate its clients’ executives as to the opportunity to use computers to replace the straightforward processes that were handled by clerks, e.g., payroll, inventory update, accounts receivables / payables, etc.  These sequential processes of updating data bases were readily handled by the predominance of magnetic tape-based, sequential record data bases. THINK back then was how to make the business case for top-level management to lease these intimidating physical electronic monsters (purchase was not an option at that time with IBM).


To take on this challenge of converting manual (analog) processes to digital ones, IBM was hiring two basic types of disciplines, i.e., MBA’s and teachers. The former (which I was) were used to provide the business case, e.g., the discounted present value of advancing a business process, and the latter were used to present the business case.  With the phenomenal amount of Sales School training that IBM provided to its marketing personnel at that time, these two disciplines were blended to provide an unprecedented marketing force. We didn’t have PowerPoint, of course, but we were well trained on paper “flip chart” presentations that permitted us to efficiently make our “bullet” presentations to client executives.


As a side point, IBM’s Marketing Representatives were also trained on basic marketing/sales concepts such as

  • Shut up once you asked a question of the client so as to permit that individual to reach his / her own conclusion based upon what you had presented;
  • Once the executive agreed to the sale, you introduced no additional thoughts;
  • It takes 10 cold calls to close 1 deal;
  • Do not disparage a competitor directly. However, one could state demonstrated truisms, e.g., “Burrough’s computers perform 1/3 slower on your accounts receivables as demonstrated by the benchmark test that we performed with your data.” If you violated this principle, then it was very likely that you were soon on the street.
  • One never had alcohol at lunch  – unless the customer insisted, at which point you didn’t go back to your office or to that of your clients;  and
  • One dressed based upon the dress code of the customer – as long as it was a dark suit and a white shirt.

While IBM set the high water mark for ethical behavior in the Data Processing industry (the phrase for Information Technology back then), if not elsewhere, there was no question as to the benefit of such behavior including a most important advantage that an IBM business card would get you pass the secretary of almost any executive. Those were the good ole days, in that marketing was above board. Again, an IBMer would be fired immediately if s/he violated IBM’s sense of business ethics; ethics that were and are still unmatched in the US business (and political) environment in my opinion.

At this point in time, THINK was more about hardware than it was about software. Within a decade or so, the perspective of THINK advanced to Stage 2 with the transition from sequential tape processing to that of dynamic, direct access to data via affordable disk drives and the associated advancement in software.

2: Process Reengineering

For the last several decades, the concept of THINK has been all about functional understanding of what a business process is attempting to achieve. Some readers may recall the rush to Process Reengineering in the 90s. Simply explained, process reengineering meant reTHINKing how processes were handled as to workflows given the use of computer processing and wired telecommunications that integrated otherwise disparate entities in a company. This was a holistic perspective of the company and, in selected cases, an industry. However, the ability to reengineer processes was most often directly related to the ability to use wired communications between the sub-entities for the purpose of distributed, but integrated processing. However, for industries that are primarily about managing mobile resources, e.g., railroads, process reengineering was greatly limited in that a wired path can’t be attached to a locomotive. As a side point, IBM had developed an extraordinary concept of Business System Processing (BSP), a.k.a. Information System Processing (ISP) that proceeded process reengineering by 2 decades to optimize data storage. I have a posting on BSP that can be found by clicking on the category of Strategic Railroad on the right side of the home page and paging down to It Takes an Industry: Process, April 14, 2012.

3: Connectivity

With the ubiquitous availability of wireless data networks now, whether commercial or private, the 3rd state of THINK now also includes who “THEY” are that are involved in the functionality. This is an issue of connectivity, with a minor in functionality. For railroads this means tightly integrating the management of its trains, crews, locomotives, and maintenance with the back office systems based upon a very simple principle: “Where are my trains (I mean really where are trains other than just a block), AND at what speed are they traveling. This is all about running a truly-scheduled operation. The ultimate, but largely unachievable, example of this is moving block. But, short of that is the role of Proactive Traffic Management (PTM) that minimizes the consequences of traffic conflicts in dense corridors, and that can support “flexible block” operations versus the inefficiency of fixed block operations with traditional CTC operations. I have a posting on PTM that can be found by clicking on the category Strategic Railroading on the right side of the home page, and paging down to Degrees of Separation, December 26, 2012.


With the mandate of PTC, the freight rail industry has been forced to develop an industry-wide wireless network, which is clearly the true value of the PTC mandate given that our freight railroads are already extraordinarily safe. For those individuals that are still confused about the business benefits of PTC, please, please understand that PTC does not deliver business benefits. It is the availability of a wireless data network required for PTC implementation that can provide those benefits – as evidence by NS and BNSF, at least, that are achieving those fatuously proclaimed PTC benefits by some misguided individuals without the implementation of PTC.

An article of mine is scheduled to be published in the forthcoming C&S issue of Railway Age, and it will describe the pursuit of this stage, not just from an individual railroad standpoint, but also as what can be done to increase the efficiency of the U.S. freight rail industry. The underlying principle here is that a railroad is limited to its ability to run to schedule if the railroads with which it interconnects are not running to schedule, and visa versa.  In my opinion this Catch 22 can best be resolved by 2 means. First, railroads require PTM (with a glazing of flexible block), and Second, the annual bonuses of railroad executive must include a performance measurement as to Industry Efficiency. However, it is unlikely that the pursuit of industry efficiency will happen until there is a true Strategic Industry Railroading perspective that involves all of the Class Is.  So! Who will provide that industry strategy?  Hmmmmmm! It appears that there is a role for an independent consultant. Please call: (904) 386 3082.

Next Generation Operating Systems

As the result of the study that my consultancy completed in Egypt in December 2012 to advance the safety and efficiency of the Egyptian National Railways (ENR), there is now what I refer to as the Next Generation of an integrated Traffic Control, Traffic Management, and Enforcement systems. That is, Virtual CTC (VCTC) uses advancing technologies such as wireless data and virtual positioning, in concert with a CTC-type back office, to deliver tremendous safety and efficiency capability at a mere fraction of the cost that would be required for conventional or advanced signaling such as ETCS and CBTC.

The video below places VCTC in perspective to the traffic control, traffic management, and enforcement systems across the globe and addresses how both railroads and suppliers may want to pursue its development and deployment.

Teddy Bears Revisited

Three years ago in this blog I introduced a category of postings referred to as the “Teddy Bears” (TBs), as listed on the right side of the home page. Simply stated, TBs are convenient, but ill-justified, statements and beliefs that too many traditionalists in the industry (whether they be regulators, railroaders, or suppliers) fatuously cling to justify their perspective of railroad operations as to safety and/or efficiency. Unfortunately, these TBs are also restricting the opportunities to improve operations via the deployment of advancing technologies and associated business processes. Why these traditionalists do so, whether knowingly or not, is very likely due to the following:
1. They truly don’t consider the bottom line of railroading by not providing cost-effect technology strategies aligned with a strategic business plans;
2. Railroads relies on technicians instead of Technologists who can make a business case in sync with a technology strategy; and
3. Railroads’ upper management is focused on short-term goals to maximize their annual bonuses; and
4. There is little to no business strategy as to the advancement of operations across the railroads as an industry.

The TBs that I have covered so far include the following:
• No Time For Strategy (November 2010);
• CAD Delivers Traffic Management (October 2010);
• Train Dispatching is Too Difficult for That Math Stuff (August 2010);
• Digital Authorities are Vital (July, 2010);
• PTC is Vital (June 2010);
• Operating a Railroad Safely Requires Signaling (June 2010);
• There’s Nothing Vital in Dark Territory (May 2010);
• PTC Delivers Business Benefits (May 2010);
• We Run a Scheduled Railroad (May 2010).

There are other TBs that have yet to be covered in this blog including:
• Real time data is the Real Thing for structuring technology solutions;
• The lack of reliable interchange by other railroads is a real problem for our railroad.
• The railroad environment is unique and therefore requires unique technology solutions. Hence the railroads’ technicians must do the design;
• Only traditional suppliers can possibly understand railroad operations;
• It’s all about the main line – yards operations are secondary;
• As regulators, we can only accept “zero-tolerance” for operational risk;
• The Service Design folks can’t deal with all of the exceptions that occur;
• Don’t question, yet alone criticize; and lastly
• Just a couple more years and it will be somebody else’s problem.

Most of the above TBs, if not all, still exist to a great extent across North America’s freight railroads, arguably the World’s most sophisticated freight operation. So! What chance is there for the antiquated and developing railroads across the globe that are being forced-fed the “conventional” traffic control and traffic management systems which are based upon century-old technologies?

Within the next several months I will have articles published in Railway Age , International Railways Journal (IRJ), and possibly another international journal that addresses vehicular technologies regarding the Virtual Centralized Train Control (VCTC) system I designed with my associates to address the requirements for the Egyptian National Railways (ENR), as well as many, many other railroads across the globe that are critical for expanding the commerce of their respective countries. Those articles in concert with the attached video, take on many of the TBs addressed above as to safe and efficient rail operations without the use of traditional, conventional solutions that are justified only for high density rail operations.


Lastly, I encourage you to suggest other TBs for my consideration of a possible posting.

The Goods, The Bads, & The Uglies


Given my now–completed engagement in Egypt to design a new traffic control, traffic management, and enforcement system, titled Virtual CTC + Enforcement, for the majority of the Egyptian National Railways (ENR), I have an even increased appreciation of 2 primary GOODs of railroad operations in the U.S. that do not exist in Egypt and many other countries across the globe. First, U.S. railroads are privately-owned in a capitalistic society that promotes the investment in those operations based upon the bottom financial line, simply stated as optimizing the return on investment. Second, the Federal Railroad Administration (FRA) provides the regulatory oversight without which inscrutable railroad operators have and could tradeoff the bottom safety line for the financial one. This blend of regulated safety and fiduciary responsibility has well serviced the railroads and the public alike since the Staggers Act of 1980 that deregulated the railroad market. As such, I dare say that nearly every decision by the railroads is a financial one, including those that deal with safety issues alone and not operations. Arguably, however, there here have been several exceptions as is the case of BNSF’s pursuit of PTC.

For most railroads, PTC as an overlay system, was never seriously considered to be a pursuit given that the costs of deploying PTC far, far exceed the projected safety benefits. The first PTC system, CSX’s CBTM for which I was the architect, was pursued because its engineer was at fault in the 1996 Silver Spring, MD accident in which there were 11 fatalities.  Especially given the accident’s location within the DC Beltway, CSX feared that Feds would force some type of  driver-enforcement system, and the only system being tested at that time was a pathetically over-designed concept referred to as Precision  Train Control. This PTC was not an overlay, enforcement-only concept. This PTC was an overly ambitious and, at the time, technically-unachievable moving block concept. Hence, CSX’s decision was a defensive one to develop a pragmatic approach, and that I did with CBTM providing the foundation for the overlay PTC systems being pursued to meet the Federal mandate. Subsequent to CSX’s efforts, BNSF expanded on CBTM’s scope of dark territory to include signaled territory, and it did so because “it was the right thing to do!” according to one BNSF top executive. There did not seem to be any immediate financial justification for BNSF’s efforts . . . except for a possible hidden agenda to move to one-man crews at some point. Nonetheless, BNSF had seemingly made a too-rare decision to invest in safety for safety sake without the immediate financial justification.



The other railroads were clearly not following the leads of CSX and BNSF. The business case was clearly not there to make such a financial investment. However, those individuals and organizations that wanted PTC at any cost promoted analyses and statements about the business benefits of improved asset management (e.g., track time, capacity, locomotives, crews) that PTC could reportedly provide so as to falsely justify their position.  These individuals and organizations were without the willingness, perhaps intelligence, to understand the difference between traffic control and enforcement. Simply explained, traffic control generates movement authorities and therefore is the means of achieving asset management effectiveness.  PTC only uses the parameters of the authorities generated to provide enforcement. With the simplest of understanding and rational thinking, one will realize that it is the ability of a locomotive to reports its position AND speed that supports more effective generation of movement authorities, which determines the management of railroad’s assets. To provide locomotive position and speed data simply requires a wireless data path, which happens to be a requirement of PTC as well. But, a railroad does not need PTC to get the wireless data path, as readily demonstrated recently by several Class Is that are obtaining those alleged PTC business benefits without PTC.  Nonetheless, after very credible reports from both private and government entities that belie the existence of PTC business benefits, there are still lingering comments that surface occasionally claiming the business benefits of PTC. For example, it has only been in the last year that the FRA finally removed such fatuous statements from its Website.

The net of the above is that BNSF initiated and continued its pursuit of PTC for altruistic reasons, it seems, while CSX did so to prevent a mandate of an overly expensive, if even achievable, enforcement solution. But that truly was it for the industry until the end of 2008 even though were occasional meetings of AAR technical committees with purported PTC interests.

Even with the regulatory processes in the U.S. for primary industries such as the railroads, the Congress can bypass the regulators and create laws without consideration of the bottom line of the corporations affected. Such is the case with the Railroad Safety Improvement Act of 2008 (RSIA) that was a knee-jerk reaction in less than 2 months following the horrific Metrolink / UP collision in September of that year that resulted in 25 fatalities.  This Act mandated the implementation of PTC across major segments of freight and passenger operations.

So! What do the various parties do when 1. They (the Feds) want something at any cost, a cost that they don’t have to pay … or … 2. They (the RRs) are being forced to make very substantial investments in systems that are not cost justified, but are mandated to do so for the sake of zero tolerance for unsafe operations. Simply stated, “What price safety?” … and “Who pays the tab?” This is where it gets ugly.



When so confronted with Congressional mandates, a company has the choice to pay the price, pull up stakes, fight the action through the courts,  ….  and / or   ….. to delay, lie, misdirect, fake it, and/or use lobbyists to influence the Congress to amend such mandates in some fashion.  In the case of the PTC mandate of RSIA, those railroads other than BNSF, and possibly CSX, have clearly demonstrated an amazing amount misdirection, faking it, if not just outright lying, to obtain at least delays in the PTC mandate. The high mark of this activity to date was the NTSB conference on PTC, February 27, 2013.  I did not attend the conference, but I have reviewed the presentations of the various speakers, and provide below my perspective on both the credible and irresponsible, if not mischievous, points that were made.

Having been involved with PTC from the beginning, even before the FRA RSAC-PTC process a decade or so ago, I know most of the presenting individuals very well and could “hear” their oratory as I reviewed the decks. Hence, I was not surprised by most of the points made, but yet saddened and angered at what the railroaders find necessary to do to attempt to avoid the unjustifiable expense of PTC. Simply stated, they seemed obligated for their company’s sake (if not their job) to purposely mislead, misrepresent, and even lie about critical points that they believed would helpful in delaying the implementation of PTC and its tremendous capital outlay. At the same time, I was surprised and gladdened by some of the reversals in falsehoods that had been made by railroaders following the mandate. Below, I summarize and separate the uglies and the reversals into 4 categories of PTC Functionality, and the primary technologies that are involved with PTC and other primary applications associated with a railroad’s operations:  Communications, Intelligence Processing, and Positioning.

PTC Functionality

  • One presenter, at least, noted that PTC is much more complicated than anyone expected. However, its not PTC that is complicated, but rather it is a combination of Interoperabitity and the over-engineered communication, positioning, and intelligence processing solutions that ITC has been developing unchecked by senior management as to costs per necessary objectives (as discussed further below).
  • Again, as discussed above, PTC has nothing to do with asset management and the associated business benefits (other than preventing occasional disruptions due to accidents).
  • The various forms of “vital” have been used in confusing ways across the industry in addressing PTC. In the early days of RSAC-PTC I introduced the concept of functional vitality to separate the purpose of PTC from that of traffic control systems, e.g., signaling, dark territory. To be short, PTC is not functionally vital in that it does not generate authorities. Nor does the PTC BOS need to be a vital, fail-safe system, with I refer to as hardware vitality. There is an argument, however, for making a fail-safe on-board system so as to minimize the occurrences of traffic congestion as a train limps to the next yard due to regulated speed restrictions due to non-working PTC systems.
  • The comparison of PTC to European ERTMS / ETCS is totally inappropriate and purposely misleading. ERTMS is an integrated traffic control/ traffic management/ and enforcement system designed for high speed / high density traffic.  PTC is an overlay system, meaning that it acts independently of the traffic control / management systems already in place. Hence, the complexity, costs, and timeliness of implementing ERTMS, which is functionally vital, provides NO points of comparison for overlay, non-functional vital PTC.
  • A PTC-reliability study performed by ARINC was mentioned as a point of concern. Really! ARINC has a tremendous potential conflict of interest with the railroads and is clearly not in a position to be declared objective.
  • Two years ago I was the Chairman of the first World PTC Congress. During that meeting I challenged the attendees, including FRA, suppliers, and Class I railroads to explain why it was necessary, or just important, to monitor and enforce intermediate signals.  No one has ever stepped up to that question other than retired FRA employees who stated it clearly wasn’t necessary. Of course, it isn’t necessary since PTC provides a braking curve to the end of the authority. Nonetheless, the railroads have added this significant complexity, and associated cost of additional WIUs, to meet this unnecessary requirement. Originally, the first estimate for WIUs following the mandate was 75,000.  It’s now down to 35,000, and I’m pushing for 20,000 at the most.
  • Early on in the RSAC-PTC process it was agreed that grade crossings should not be an enforcement objective.  The reason was two-fold. First, it’s the railroad property and therefore they should not have to pay for the necessary infrastructure.  Second, and arguably most important, the pure physics of bringing a freight train to a stop would mean an excessive amount of gate down time, thereby possibly increasing the risks of vehicles running around the gates.


  • Contrary to what was noted by several presenters, it is clear that there was no true analysis of the data requirements for PTC for the railroads to make an actual evaluation of the need for 220, especially over that of 160. This is admitted to in the filings by PTC-220 with the FCC, and as identified (and not contested by PTC-220) in my written statements to the FCC regarding the same filing. Both my statements and those of PTC-220 in its filing for more 220 spectrum are available upon request to me. When last checked, the FCC had rejected PTC-220’s request.  On a positive note, the presentation by NS regarding PTC-220 was refreshingly honest compared to those statements and filings under the previous UP presidency of that entity. The individual noted that there is no expected need for additional 220 spectrum for most of the railroad operations.
  • As to why 160 was not considered by the railroads for PTC has little to nothing to do with the amount of spectrum available. Rather it has to do with the way in which the railroads proceeded to meet a FCC requirement to “narrowband” the frequency. To be short, they pursued conventional channel assignments instead of using “trunking” which is critical for effective usage of the spectrum in metropolitan areas.
  • It should be noted that UP / NS purchased the 220 spectrum the year before the PTC mandate – before the MetroLink/UP accident. Why they purchased the spectrum is unclear, but given their resistance to voluntarily pursuing PTC, it is doubtful that they did it for PTC. It was after the mandate that BNSF and CSX were “persuaded” to forego their own communication solutions for PTC, each of which was much less robust, yet adequate, then the required wireless claims stated without proof by PTC-220. Subsequently, PTC-220 purchased Meteorcomm from BNSF to produce the locomotive radios even though Meteorcomm had neither the proven technical nor available manufacturing capabilities to provide the radios.

Intelligence Processing

  • The Back Office Server (BOS) was suggested to be a portion of the critical path to meet the deadline. In my opinion there are 3 possibilities that this could be, with only one that makes any sense at this point. First, the functionality of the BOS is very, very straightforward and has already been achieved by BNSF with some minor changes remaining due to changes in the operating rules to address interoperability, as agreed to by the railroads during the conference. Second, the concept of vitality, as to failing safe, is clearly a red hearing. An overlay system can hardly fail other than safe in that it doesn’t generate authorities and instead only targets based upon the authorities generated. Even more misleading, one presenter likened the vitality of the BOS to the vitality of the European ERTMS. This is a purposeful misdirection. The vitality of ERTMS is that of the generation of authorities and the integration of the enforcement processes.  PTC is an overlay only and the functional vitality of generating authorities does not exist. Only the third reason has any merit. That is, linking the BOS with the individual Traffic Control systems in place for each railroad could be difficult. This is not due to technical reasons, but due to social/political conflicts that may exist between any given railroad and the suppliers involved, most importantly Ansaldo, formerly Union Switch & Signal. While Wabtec’s and Ansaldo’s HQs are only miles apart in Pittsburgh, their mindsets and willingness to cooperate between themselves and the railroads involved could span oceans, if you will.
  • PTC is locomotive-centric, meaning that all processing of data for enforcement takes place within the on-board computer. Normally, this would not need to be stated, but the fact that the conference included a presentation on ARES suggests that someone thought there was some value in understanding the pursuit and the ultimate rejection of ARES.  To be clear, ARES was a clever traffic control and traffic management concept that integrated some PTC-like enforcement capability in the back office systems for signaled territory. However, it really has nothing to do with locomotive-centric, overlay PTC systems that are designed for both dark and signaled operations.  CBTM established the threshold for PTC, and the Singularly Disillusioned individual (SD) that has been inappropriately promoting both the supposed vitality and business benefits of PTC based upon his ARES experiences has actually done some harm in advancing PTC in a credible fashion, as exemplified by the horrendous FRA-funded report on PTC benefits performed by ZetaTech several years ago.


  • I didn’t note any significant comments regarding the issues of positioning, other than those of SD in the ARES presentation. Again, his comments are way out of fashion as to his focus on DGPS, as well as the fact that it was in my designing of CBTM that I introduced the monitoring of switch position in dark territory for “routing” trains, and which subsequently became relevant for the 4th objective of PTC of preventing movement through misaligned switches.
  • From my previous evaluation of ITC activities for a client, it became clear that the ITC technicians were way over-designing the accuracy of the positioning platform – I mean way, way overdesigning. The major effect of this is excessive cost for the on-board platform that could be in the range of $10,000 to $20,000 per locomotive, hence raising the cost of nation-wide PTC by several $100 millions

I would like to think that the NTSB recognizes that a number of presentations made at the conference to support an extended implementation period were highly prejudiced and even purposely misleading in some cases. Fortunately, PTC is beyond the need to evaluate the feasibility of its functional capabilities.  PTC does work. The primary constraints that are being presented by the railroads are a technical nature, as noted above.  Hence, if NTSB requires an objective analysis of PTC implementation issues, it requires a Blue-Ribbon Technical Committee, independent of the FRA, the railroads, and the likely suppliers, that can make such evaluations. The railroads will likely object to such evaluations. But, cannot any extension in time for the mandate be made conditional on such evaluations?


Outside of North America

For those railroads outside of North America that may be considering some type of enforcement system, e.g., V-CTC + Enforcement in Egypt, the above discussion as to the cost / benefit analysis of PTC does not likely apply. For example, the V-CTC + Enforcement system that I designed will prevent accidents due to mechanical interlocking operators and level crossing guards. In fact, my presentation of the final system design of V-CTC + Enforcement to Egypt’s MOT / ENR officials in December, 2012 was delayed several weeks due to two accidents, one each regarding the interlocking operator and crossing guard, that resulted in 5 and 50 fatalities respectively. V-CTC + Enforcement would have prevented those accidents; PTC as designed for the U.S. would not. Accordingly, Egypt’s Prime Minister directed MOT / ENR the following day to proceed with testing V-CTC + Enforcement.


Degrees of Separation

The concept of 6 degrees of separation was initially introduced in a play written by John Guare in the early part of the 20th century declaring that each of us is only six steps of introduction from any person in the world. In current terms, this concept is readily acceptable given the advancement in communications and travel that has shrunk the world as to providing such connectivity. In fact, with the predominance of social networks available via the world wide conduit of the internet, one could argue that the six degrees of separation is now substantially less, if not just one. Arguably, the most dramatic example is that of the Arab Spring that has brought the citizens of suppressed countries, including their expatriates, to the point of uniting against their respective governmental tyrants.  One would like to think that our individual connectivity has no boundaries at this point as long as the paths of internet communications can be provided to the masses via wireless. However, as well demonstrated by the recent U.S. Presidential election, this same advancement in connectivity also provides the ability for those individuals that don’t have a rational understanding of facts to present their self-serving prejudices to misdirect those that solely place their faith in the written word, as to what can be achieved. To that point, only but the most uninformed or self-serving individuals would be quickly reminded by the Republican campaign for the recent U.S. President election which overwhelmingly (compared to that of Democrat’s campaign), consisted of a constant stream of a substantially misrepresentation of facts to present a phenomenally irrational, non-compromising  right wing perspective that serviced those most-selfish individuals that have benefitted from the benefits of a capitalistic  society, but without the recognition of the masses that have made their accomplishments achievable. Fortunately, for the benefit of the majority of the U.S. populace, President Obama was re-elected. With that stated, onward to railroads.

Playing on this concept of how technologies, most specifically wireless communications linked with Internet, have brought the world closer today, it also true the degree of train separation can also benefit from the introduction of technologies, again wireless data, and the use of advanced traffic management systems that can provide a substantial increase in traffic density for any given corridor by simply knowing the position AND speed of trains. With the availability of both position AND speed data, that doesn’t  exist for the majority of railroads across the globe, a railroad’s operations can project  and prevent conflicts that may occur even within fixed-block operations as determined by traditional electronic signaling operations that depend upon traditional wayside technologies that provide block-size positioning at best. I refer to this capability as Proactive Traffic Management (PTM) as is described in greater detail in  various other postings on this blog.

The deployment of PTM is quite inexpensive  both absolutely and especially relative to its value in that it can be provided as an overlay to a railroad’s choice of traffic control, whether it be signaled or non-signaled, WITHOUT replacing the dispatching platform. This is true because PTM is only a management decision tool and not an execution platform such as CTC or Track Warrant. As a decision tool, PTM can dramatically complement, if not replace in many cases, the skill set of the dispatcher who is a manager of the execution platform. This means that PTM is not functionally vital, i.e., it does not generate authorities that provides for the integrity of train movements. The ultimate deployment of PTM is when it is tightly integrated with traffic control thereby becoming some level of moving block – a vital system. But only a few high speed / high density railroads can benefit from a moving block capability. In fact, in the U.S. there are a number of operations-savy individuals that will note that moving block for the most dense freight traffic corridors would provide little benefit until the yard operations are optimized concurrently. So! As an overlay to traffic control, short of making a transition to moving block, what is holding back the deployment of PTM across the majority of globe? I believe the primary reasons differ between public and private railroads.

PUBLIC: Outside of the Americas, the predominance of rail operations are owned / controlled by the governments of the countries in which they operate.  Again, in general, these are passenger operations without a clear responsibility for addressing financial bottom line, i.e., providing cost effective solutions that have to pass the threshold business test as to making a profit, or else it is out of business. In these environments it seems that the suppliers often rule the roost in designing the traffic control solutions that aren’t necessarily cost-justified. Technicians thrive on promoting systems in this environment; they believe that they are justified in delivering solutions without restrictions as to costs. However, for those countries that are confronted with growing their economies internally, as well as integrating with the world economy, they are being presented with technologies that they simply cannot be justified.

PRIVATE: In the Americas, the freight railroads are competing with road, barge, and pipeline transport and therefore have to maintain a for-profit operation to stay in business … or they are out of business. Indeed, in the U.S. there have been tens if not hundreds of railroad bankruptcies in the last century. The Penn Central bankruptcy in the 70s (which the largest bankruptcy up to that time for all industries and for which I was the lead financial analyst for the Trustee Staff, is the ultimate example. This railroad lost its understanding of what it was, and eventually went under. That railroad went into a downward spiral as it reduced maintenance expenditures . . . which resulted in reduced traffic speed . . . which resulted in the loss of revenue . . . which resulted in further reduction in maintenance expenditures … and the downward spiral continued to the point of bankruptcy.  Conrail was the Phoenix rising from the ashes of the Penn Central. OK, back to the issue of separation.

The separation between trains, a.k.a. headway, is THE key issue in determining the type of traffic control that should be in place, whether it be freight or passenger operations. Those European suppliers that service the high speed, high density operations in place across that continent have developed sophisticated systems that provide for both safe and efficient operations. BUT, what about those countries in Africa, the Middle East, and elsewhere that need cost-effective solutions to bring basic rail infrastructure to grow their GNP, both internally and relative to the world market?  They cannot afford the likes of traditional signaling, yet alone ETCS 1,2,3. These railroads need cost-effective solutions ; they need traffic control solutions generically referred to as dark territory that are used by railroads in the Americas that have a clear vision to the bottom line. They also need enforcement systems to prevent accidents due to human errors.  I speak with experience on this point given my assignment as Project Leader to address the safety and efficiency of the Egyptian National Railways (ENR) that still uses token and token-less traffic control across 82% of its operations.  With detail to be provide in the next posting on this blog, my team of independent consultants  (we don’t represent suppliers and we don’t accept commissions) have designed a traffic control, traffic management, and enforcement system that greatly improves both the safety and efficiency of ENR’s operation at a mere fraction of the cost to deploy ETCS.  This is a proven system as to the individual components that we have integrated. We have done so recognizing the true nature of ENR as to what they are and will be in the foreseeable future along with the realization of the capital investment that they can support. The approach I have titled as Virtual CTC (V-CTC) + Enforcement,  provides CTC functionality with the ability to prevent accidents due to drivers AS WELL as mechanical interlocking operators and level crossing guards, as well as the loss of train integrity. For example, two horrific accidents in Egypt in November, 2012 resulted in 54 fatalities that could have been prevented with V-CTC + Enforcement due to errors by mechanical interlocking operators and level crossing guards. Both of these accidents would not have occurred in the U.S., but in Egypt with their antiquated traffic control systems dependent upon “vital employees” (see the previous posting on this blog), there were human errors for which there was no enforcement system in place to prevent. But, through the efforts of my team in performing our study there, we recognized and modified the enforcement concept of PTC to handle. Specifically, we have designed an approach that monitors the traffic control activities of these vital employees to ensure that they have performed in providing valid movement authorities.  Most importantly, Virtual CTC + Enforcement minimizes the capital requirements to operate the railroad both safely and efficiently, versus slamming in signaling infrastructure and/or ETCS that would be 30 to 50 times more expensive by my rough estimate.

I can’t over emphasized the need for pragmatic, cost-effective solutions for traffic control, traffic management, and enforcement that traditional suppliers have refused to address for the majority of railroad operations across the globe.  Shame on them. Enough said. The next posting here will present V-CTC + Enforcement for those railroads and suppliers that are looking for solutions that support the majority of railroads across the globe that don’t provide high speed / high density operation – both passenger and freight. Please contact me at if you which to discuss your particular interests. My team of seasoned railroad professionals can address the functional, technical, financial, and mathematical throughput analysis of considering V-CTC + Enforcement from both a tactical and strategic perspective relative to expanding the safety and efficiency of a railroad’s operation, especially when integrating freight and passenger operations.

The bottom line here is that I warn railroads from being fooled by the written and stated words of suppliers that have solutions that are not appropriate for their operations. There may be pragmatic, cost effective solutions of which they may not be aware.

The Vital Employee

With the introduction of overlay PTC just over a decade ago, the concept of vitality needed to be expanded at that point beyond the mantra of signaling engineers as to a vital component or system being one that fails in a safe manner, i.e., failure without introducing any additional risk.  In addition to this design vitality, it was necessary to introduce a concept of functional vitality to prove that PTC was and remains not vital. That is, a functionally vital entity is one that generates the movement authorities for trains, thereby providing for the integrity of train movements. For signal engineers the two concepts are inseparable, and in their viewpoint, anything associated with traffic control must by vital. Such fatuous rationalization can be quite unfortunate for the deployment of advancing technologies in railroads, including PTC. Two current examples here are ITC’s efforts in designing the wireless and positioning platforms for PTC that are way beyond what is required for a non-vital system, if even a vital one.

In anticipation of such design tangents by railroad technicians ( as demonstrated in the past by UP with it Precision Train Control project that died from overdesign), I introduced the functionally vital perspective a decade ago to demonstrate that overlay PTC is not vital and therefore not subject to the design and regulatory complexities associated with vital systems. Stated otherwise, PTC’s ability to enhance the safety of rail operations is substantially less critical than that of the traffic control systems that provide for the integrity of train movements. PTC only addresses human errors whereas traffic control systems are absolute.

Being the architect of the first overlay PTC system, I was continuously challenged during the early years by labor, FRA, suppliers, and even my counterparts on other railroads, to explain why PTC is not vital. The forum for these discussions was primarily that of the Rail Safety Advisory Committee (RSAC) for PTC that was charged with defining the core objectives of PTC. Understandably, RSAC-PTC was primarily manned by signal engineers who live and breathe vitality with their natural inclination being that everything is vital. Again, for them PTC had to be vital, I assume, because it addresses safety, and it is related to vital traffic control systems. At the same time, signal engineers when asked during the courses I teach on PTC and railroad operations “What is vital in dark territory?”, will respond that there is nothing vital since there is no wayside equipment. The solution for addressing both of these ill-structured mind-sets of signal engineers as to PTC and dark territory was to provide the functional definition of vitality that really goes to the core of running a safe railroad, i.e., the generation of authorities.

In parallel with the functional vitality effort was the extraordinary task of convincing the masses that PTC did not deliver those business benefits that continue to be so widely and wildly proclaimed by FRA and suppliers as to increasing traffic density and the efficiency of the key operating assets, e.g., crews, locomotives, and even maintenance crews. I quote the FRA’s website “In addition to providing a greater level of safety and security, PTC systems also enable a railroad to run scheduled operations and provide improved running time, greater running time reliability, higher asset utilization, and greater track capacity.” Here is the simple, and one would think very obvious, logic as to why overlay PTC can’t provide such business benefits. To increase traffic density means that the generation of movement authorities need to be done more efficiently … and since PTC does not generate movement authorities (nor deliver them as the FRA website proclaims – that is the purpose of digital authorities – not PTC), then it cannot provide those benefits.  Actually, if not properly designed, PTC can actually decrease both the traffic density and safety by making unnecessary enforcements. What the FRA and others who flaunt PTC business benefits refuse to understand is that it is the wireless data path required by PTC that also permits train tracking status data to be delivered to back office management systems.  As demonstrated by NS and BNSF at least, a railroad doesn’t need PTC to obtain the stated business benefits; a railroad only needs a wireless data platform, whether it be cellular, satellite, and/or private. In any event, the bottom line remains, i.e., PTC is not vital in any sense.

OK, at this point you may be thinking about VPTC (where V means vital) which is one title given to the PTC systems being pursued by the freight and commuter railroads. Clearly such a title suggests that PTC is vital, but it isn’t. VPTC means that the platforms upon which those PTC systems are deployed are design vital so as to reduce the failure of the PTC system, but PTC is still not functionally vital. The purpose of VPTC is to provide a pragmatic economical solution to regulatory issues that requires a restricted speed for a train should its PTC platform fail. In heavy density corridors, the application of restricted speed could result in significant business costs.

With the distinction between design and functional vitality now established above, I introduce a new vitality phrase: “Vital Employee”. Simply stated, a vital employee is one that generates a movement authority. For U.S. railroads, the primary example is the Employee-In-Charge (EIC) that provides the authority to a train to move through a work zone, a work zone that is encapsulated (nested) within an authority generated by a traffic control system. Handling the enforcement of the nested EIC authority was a major design issue that I had to provide for the first overlay PTC system … and is now used by the PTC systems being deployed by the freight railroads.  Again this was done in a non-vital way by not affecting the underlying Method of Operations, thereby avoiding regulatory complexities.

The vital employee perspective has proven to be particularly challenging in my assignment as Project Leader for a consulting effort in Egypt to advance both the safety and efficiency of the majority of the Egyptian National Railways (ENR) operations that use token block and TYER, a.k.a. British Absolute Block, traffic control systems. In the case of ENR, their operations have mechanical interlockings that are handled by operators independent of the central movement office. Instead of a centralized dispatcher, ENR uses block/interlocking operators to generate block-by-block authorities thereby compromising the efficiency and safety of train movements compared to that which railroads around the world achieve with dark and signaled operations. For this engagement, a “virtual” CTC (V-CTC) system is being designed that will provide for multiple block authorities subjected to nested, manual interlocking authorities. This solution provides for enforcement for the authorities generated by both V-CTC as well as the interlocking operator.

As a closing point, I wish to remind all that the Book of Rules provides the underlying threshold of vitality for all rail systems. In my 40+ years in the industry, I find that too many tend to ignore this point – just as signal engineers tend to ignore dark territory.

It Takes an Industry: Education

This is the 2nd of 3 postings that address Industry INTRAoperability (I/I), i.e. the development of systems that support the business interest of the entire rail industry, versus the advances in technologies and systems made by each individual railroad for its singular purposes.  I/I is not the same as Railroad INTERoperability, as is required to deploy Positive Train Control (PTC) as a safety enhancement to the traffic control systems that provide for the integrity of movement operations. Rather, I/I addresses the business perspective of the advantages to the industry by the improved management of key resources subject to the interchange of trains between railroads. The assets that I am referring include the full array: track time, train crews, yards, locomotives, rolling stock, and shipments of high value and/or involving security issues.

Yes! I did state track time, train crews, and yards even those assets don’t cross borders. The reason for doing so is that the use of those assets increases in efficiency as the degree of scheduled operations increases . . . And, the ability of an individual railroad to run to scheduled operations is partially dependent upon the schedule reliability of the railroads with which it interconnects . . . And, since most railroads have yet to demonstrate their ability to run to schedule to a significant extent, contrary to their claims, then a valuable opportunity of pursuing I/I is that of providing timely data of train movements, both position and speed, across all interconnecting railroads so as line-ups can be adjusted in a timely fashion.  Unfortunately, even with such data, a number of roads are incapable of using it to any great extent given their lack of Proactive Traffic Management techniques that I introduced 6 years or so ago in my quarterly publication, Full Spectrum. However, it is encouraging that at least NS and BNSF have made such advancements via the deployment of pragmatic wireless solutions that can report the speed and position of their own trains on their respective properties.

As to the locomotives, rolling stock, and shipments that do cross railroad borders I identified a number of I/I applications in the FRA-funded study I performed in 2008: A Demand and Supply Analysis of the Opportunities for Wireless Technologies in Passenger and Freight Rail Operations, ( As the result of that study, I decided shortly thereafter to take the same approach that IBM used in the 60s and 70s to bring about major changes in the traditional business processes of a full range of industries with the introduction of main frame computers. That is, IBM established major executive education facilities and curriculums across the U.S. to expose their prospective clients’ top management teams to what could be done with computers. As noted in the previous posting, the initial efforts focused on replacing manual data handling processes, e.g., payroll, accounts receivables / payables, with computerized data processing. However, with the introduction of affordable disk storage and the integration of telecommunications with computers, the curriculums expanded in scope by identifying how to change the traditional business processes given the opportunities to rethink the flow of information within and between enterprises (The process of structuring a strategic information flow architecture will be discussed in the next posting: It Takes an Industry: Process).

So, following IBM’s lead I put together an Strategic Railroading Symposium for top railroad executives that would be sponsored by the supplier community overall to remove even the perception of bias. The symposium schedule (presented below) that I put together consisted of 2 tracks, Operations & Engineering, with two categories of topics each, that addressed I/I opportunities as well as other possible applications that I believed at that time would be valuable exposure for railroad top management. Actually, this effort was progressing well with the expression of key suppliers to participate . . . that is until the ramifications of the just-ordered PTC mandate took effect. At that point, rail’s management teams withdrew into their caves rejecting the consideration of anything other than the challenges of implementing PTC. The suppliers, hence, backed away from the opportunity given their inability to market even their current products and services, yet alone the challenges and risks of developing a long-term strategic perspective.

As you will see in the agenda below, several of those applications have had sporadic initiations across the industry in the last several years.

Traffic Management
Delivering Proactive Traffic Management NOW without new CAD
The pragmatic application of meet/pass planning tools
Effective management of the line-up
The challenges and opportunities of effective interchange
The challenges to increasing scheduled operations
Reconciling the perspectives of Service Design vs. Operations
Integration of yard status with main line dispatching
Minimizing conflict between high speed passenger and freight trains
Resource Management
Optimizing crew management relative to the lineup
Balancing locomotive fleets across the industry
Industry tracking of key rolling stock and shipment status
A new look at work order reporting in light of TSA requirements
Maintaining chain-of-custody for critical shipments
Opportunities for improved yard management
Track & Wayside
Unattended, locomotive-borne track inspection
Enhanced safety for on-track workers without authorities
Enhanced safety for workers within work zones
Monitoring the position and health of critical maintenance equipment
Rolling Stock
Locomotive tracking & diagnostics across the industry
Performance-based locomotive maintenance
Industry-based locomotive maintenance
In-train monitoring systems of equipment and shipments

When rail management surfaces from the PTC abyss, then perhaps there will be an opportunity to reconsider some version of the Strategic Railroading Symposium.

Don’t Drink the Kool Aid

The elixir of fatuous rationalization being served up by PTC-220,LLC to gain more spectrum in the name of PTC has been poisoning the efforts of both freight and passenger operations to cost-effectively meet the mandated implementation of PTC before 2016.

Point 1: In May 20011, the Federal Communications Commission (FCC) of the U.S. released WT Docket No 11-7, with Public Notice, regarding the “Spectrum Needs for the Implementation of the PTC Provisions of the Rail Safety Improvement Act of 2008”. Subsequently, in addition to my written response, a number of submissions were made by various parties, most notably several passenger operations and PTC-220, LLC (the entity owned by BNSF, CSX, NS, and UP that owns and manages the 220 MHz spectrum to be used for the implementation of PTC).  The FCC’s Docket was the result of the request by PTC-220 to obtain additional spectrum in the same band reportedly to service both the freight and passenger rail requirements of the PTC mandate.

Point 2: At the end of 2010, the Federal Transit Authority (FTA) released several RFQ’s for studies to be performed relative to PTC and CBTC. The primary study was to evaluate the issues associated with implementing PTC on commuter and regional rail systems. As I will be explaining in a posting I will be making shortly, this effort by the FTA is a very pathetic example of how a Federal agency can spend a fair amount of money and achieve nearly nothing of interest to the intended recipients. The proposal was poorly written as to both objectives and understanding of the subject,  along with a process for evaluating and awarding the contract that was clearly inappropriate and unfair. (Yes! My team’s proposal was not selected. But, I will explain the madness of the process in the forthcoming posting). The point for now is that in preparing the proposal, my team discussed the wireless issues with a number of passenger operators and gained some understanding in a very short period of time as to the concerns that they have as to the use of 220 for PTC.

To be addressed in greater detail in the forthcoming issue of my quarterly journal, Full Spectrum, titled Wireless Gone Awry, I will highlight below a number of points as well as statements  that PTC-220 made in their submission to the FCC’s Public Hearing, that are critical to understand in consideration of providing more 220 to PTC-220.

  • First of all, I am not saying that PTC-220 is incorrect in requesting more spectrum if they really need it.  However, by their own admission, they really don’t know what they need in that they have not done any credible data modeling relative to PTC. They are spectrum hungry and may even be looking at this spectrum as a “for profit” operation for dealing with the passenger operators.


  • In their submission, PTC-220 likened PTC to advanced traffic control / management systems and the need for complex wireless networks to service the latter. I find such a comparison either to be shamelessly naïve or quite devious.


  • The passenger operators have been led to believe by PTC-220, reportedly, that they must obtain 220 specifically for their own property to be compatible with the freight railroads. Hence, from some of the submissions by passenger operations, it appears that they were pressured, or unfairly influenced, to support PTC-220’s position. The requirement to use 220 only is clearly incorrect and could be very costly for those operators that will be extremely pressed to find the public funds to implement PTC.


  • PTC-220 states that they had engaged TTCI (which is operated by the AAR and hardly free of conflict of interest), to perform data modeling nearly 6 months prior to the submission, and yet there were no results that they could include in the submission. Really? I have team members that could handle that analysis quite quickly.


  • The onboard PTC platform, a.k.a. TMC, incorporates a Mobile Access Router (MAR) that supports the use of alternative wireless paths, including 220, WiFi, and cellular.


  • The rail industry is poorly utilizing a fair amount of spectrum, including conventional 160 MHz instead of trunked operation, 44 MHz now owned by PTC-220 and which was the choice of BNSF for PTC, and 900 MHz that was given to the railroads 2 decades ago to do ATCS.  ATCS was never implemented and the railroads have used the spectrum for business purposes instead of giving the spectrum back (BTW, using 900 for code line is a business decision and not a safety one).


In summary as to the above, PTC-220 should be required to define their requirements clearly and with the proper level of legitimate data analysis done by an independent entity.  As a point of further consideration, there is also a need to break down that requirement as to the type of traffic control involved as well as traffic density.  For example, deploying PTC across dark territory has a substantially different wireless requirement than deploying PTC across signaled territory with either medium or heavy traffic volumes. In short, there is a need to identify various PTC “wireless corridors” as to throughput and coverage requirements, and to model them individually.

In addition to my initial submission, I made a subsequent submission commenting on the falsehoods and misrepresentation that were made in some of the other submissions, most notably PTC-220.  Additionally, 2 weeks ago I made a presentation to the FCC to provide them with a modicum of rail domain knowledge that would assist them in understanding the true requirements of wireless for PTC.

Both of my submissions as well as the presentation to the FCC were on a fee basis for a client, Skybridge Foundation.  SBF placed no restrictions on what I wrote / presented, and did not interfere with the objectivity of my material. Both of those submissions and a PDF of my presentation are of public record and can be obtained via the FCC’s website or by emailing a request to me at Additionally, those individuals that seek to further understand wireless corridors are encouraged to contact me on that topic as well.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop