Archive for the ‘Strategic Railroading’ Category
Paper Tigers
As a fresh, professionally unencumbered MBA in 1970, I joined IBM as a Data Processing Representative (computer salesman of main frame and sensor- based computers). IBM was an extraordinary company with absolute business ethics with zero tolerance as to business ethics errors, including misrepresenting the products, both hardware and software. However, the competitors were not always so in their pursuit of a portion of the market. They disparaged suppliers without objectivity and made non-credible proposals as to performance. Fortunately, more often than not, IBM would close the deal by bench-marking its systems against the Paper Tiger proposals of the competitors’ inferior products and services. One of IBM’s advantages included the ability to make a proper business case given its emphasis on hiring MBAs for its sales force. Those ethical principles have guided me through by professional career, both as railroad management and as an independent consultant – meaning that my consultancy Strategic Rail, llc (SR) neither represents nor accepts commissions from suppliers for what we design for our railroad clients.
Moving forward 4+ decades, SR was awarded a project to design a new traffic control, traffic management, and enforcement (think PTC) approach for Kazakhstan’s railroad, Kazakhstan Temir Zholy (KTZ). At that point KTZ, as is true for most if not all Commonwealth of Independent States (CIS) – ex Soviet Bloc countries, was suffering from an antiquated CTC installation of 40-50 years ago. The cost of maintenance and the effect on throughput was choking the railroad. Fortunately, SR had just completed a similar study for the Egyptian National Railways (ENR), where SR designed Virtual CTC (VCTC) for 80% of that most antiquated railroad to replace British Empire train control methods known as token and token-less block. Hence, I had a clear vision of how to win the project. It only took one statement to be awarded the project when I met with KTZ’s VP Engineering at the time.
The VP spoke no English, and my Project Coordinator and translator was late for the meeting. As I sat across from the VP waiting for my colleague, I simply stated “NO Balises”. His eyes lit up, and he called in his translator. Via the translator I continued to explain that VCTC required extremely little wayside infrastructure by excluding balises, signals, track circuits, and control points. My colleague arrived, and we continued to explain VCTC in detail. It was then that the VP informed me of an implementation of ETCS-3 that was underway on a new corridor across the country. Via my colleague, I said to him that he had been sold a Paper Tiger explaining that the supplier was purposely misleading KTZ and collecting $100 million or so for what they were hoping they could deliver by using KTZ as a developmental corridor: ETCS-3 at that point didn’t exist in revenue service to my knowledge – and still doesn’t to any extent that I am aware of now.
Over the following months as SR proceeded with its engagement, I would occasionally say to the VP: “The ETCS-3 supplier is lying to you.” as translated by my colleague. That statement finally took hold with KTZ as evidence continually mounted. Finally, the supplier was booted off the property (after being paid a significant amount of the project budget), Additionally, the supplier’s local representative(s) was reportedly charged for criminal business practices. This is not surprising since the corridor involved could have been handled by manual block, at least for the short term, and VCTC eventually for a fraction of the cost of ETCS-3 and conventional CTC.
There were three primary issues in this situation. First, arguably most important, the supplier was not ethical in its presentation of what it actually had. Second, there is that issue of questionable marketing techniques. Third, the supplier was there to sell products and not solutions, and they were looking for an ETCS-3 opportunity. Undoubtedly, the selling of products versus solutions is prevalent across the globe, and major conventional suppliers get away with this given that most railroads across the globe are owned by their respective governments and without the proper resources to evaluate what is truly needed. Not surprisingly, a supplier is not going to design and sell a low-cost system as to both capital and maintenance – not a good short or long-term revenue plan in their opinion. Hence, traditional, conventional suppliers hold many railroads captive to what they offer, and the transportation requirements to support the wealth of these countries are suffering accordingly.
Beware of Paper Tigers. They are not an endangered species.
Look to the Skies
About 11 years ago I presented at a NTSB conference regarding PTC. Having been the architect for the first overlay PTC system that provided the initial design (architecture and dark territory operations) for what is being installed to meet the Federal mandate, I focused on what PTC IS and what it ISN’T. That was most important at that point since there was a great deal of confusion and misinformation regarding PTC that was circulating throughout the industry, including railroad management, suppliers, FRA, and NTSB. Specifically, I addressed two major points: 1. PTC is NOT vital, and 2. PTC itself DOES NOT deliver business benefits other than eliminating movement disruptions due to accidents. The underlying logic for both points is that PTC does not generate movement authorities.
In the audience there was a VP Operations for a Class I. True to my nature, I decided to state during my presentation that Class Is were failing miserably to run to schedule given their “crisis management” mindset. I then mentioned that major passenger airlines have figured it out, and that railroads would do well to bring in that discipline by hiring such executives. After the conference, the VP took me aside to discuss investigating the heavy level of crew deadheading that his railroad was experiencing. I took that assignment and within a week I recognized the prime issue noting to the VP that he was actually the underlying source of the problem. In short, the yardmasters were generating “ghost trains” on the lineup and crew and locomotive management were operating accordingly. The bottom line: there was no actual schedule to begin with (regardless of Service Design efforts), and to the extent that there was a lineup, it was readily violated, e.g., not running short trains. As a side note, during my engagement it was amazing to me the range of fatuous excuses by the railroad’s management team as to why they couldn’t run to schedule. All except one, the arrival of ships in ports, were the fault of management.
So, imagine my surprise when I read that Amtrak had brought in the retired CEO of Delta, and subsequently a number of ex-Delta executives. Somebody looked to the skies and saw the light of running to schedule; an executive mindset that has not existed in the rail industry until Mr. Hunter Harrison was brought into manage CSX. Sadly, Mr. Harrison has now past on and hopefully there is still a mindset to pursue such a difficult course, as per my previous posting: Paradigm Shifts.
Of course, there are a number of challenges to operating to schedule, other than bringing in an executive team from the airlines. Most importantly, Delta had to commit heavily to the following.
1. Delta had developed an Enterprise IT Architecture (EITA) that eliminated unnecessary data generation, storage, processing, and distribution;
2. Delta reconfigured its resource management systems to work with the EITA in a true “real time” operation.
However, fortunately for Delta, it does not schedule interchange with airlines other than codeshare operations.
The benefits of such an operation are clearly evident including the following:
1. High level of customer satisfaction;
2. Tremendous reduction in ”slack resources” to handle disruptions;
3. Nearly optimal efficiency of operations
4. Happy crews;
5. Loyal personnel and customers.
So, what needs to be done by the railroads if they want to reap the awards of scheduled operations? As with Delta, they need to individually invest in EITA and reconfigure their major resource management systems to operate in “in-time” operations, if not real time. That means that they need to strategically think how to use PTC’s platform to provide timely train location and speed information. I expect that several Class Is are already there, but only as to SILO based IT architecture. However, unlike Delta, they need to develop an industry perspective of an EITA. This won’t happen until industry politics breaks down, and the railroads build a collective mindset. As I have mentioned in previous posts, this could occur most quickly, I would like to think, if Class I executives’ bonuses where largely based on the efficiency of interchange. Lastly, I do encourage the use of passenger airline executives that have the true discipline of scheduled operations and thereby drive the railroad to make the necessary changes as to EITA and proactive, in-time resource management systems.
As a closing note, my consultancy Strategic Rail, llc (SR) developed the first and only generic EITA in the industry for Kazakhstan’s railroad that they used to move to their specific IT design. Developing an EITA requires a major commitment by management, granted, but our generic design is an excellent beginning.
Teddy Bears Revisited: Practical Technology Solutions
It is time for me to revisit my Teddy Bears” (TBs) postings on this blog in 2010. TBs are those perspectives / beliefs stated by railroaders, suppliers, and regulators to rationalize they are doing the right thing in their respective roles. However, when viewed objectively by individuals without any financial or organizational conflict, e.g., independent consultants, there are some significantly different viewpoints (alternative facts for those Trump supporters). But, these alternative facts are objective, actual facts.
Following this first TB revisited posting below regarding Practical Technology Solutions, I will be making additional postings as to Railroads: Individually vs. Industry, Suppliers: U.S. vs. International, The Customer Perspective, Pragmatic Scheduled Operations, The Regulators, Rail Operations; Domestic vs. International, Railroad Mathematics, Rail IT Architecture, PTC: What IT Is & What It Isn’t, and others that I may think of as time passes. I welcome your TB suggestions for my consideration.
PRACTICAL TECHNOLOGY SOLUTIONS
Being good at technology engineering does not necessarily make for being a good engineer when the bottom line is considered. There are several such examples in the rail industry that is still evolving from century-old technologies, e.g., track circuits, across much of the globe including the U.S. Arguably, the most telling and pathetic example is what the Interoperable Train Control (ITC) committee did in their development of an interoperable PTC system to address the Federal mandate of 2008. Below, I identify 4 primary issues in which ITC really failed each as to the lack of practical engineering in advancing PTC.
• The ITC designed an on-board positioning component to provide an accuracy of 18cm with 10-9 accuracy. Really! 7 inches with a risk of failure that will not occur in my lifetime? I assume this was based upon some vital track circuit / control specification developed over the ages. PTC is not vital in that it does not generate movement authorities and therefore does warrant such accuracy. In my rough estimation, this specification, if deployed, would raise the price of the component from $15,000 to $40,000 in my opinion – an unnecessary capital investment of $500 million plus ongoing maintenance for 20,000+ locomotives across the industry. I do understand that at least some of the Class Is have rejected such an over-engineered component, even though their collective technicians designed such.
• The monitoring of Intermittent Signals (ISs) were at least initially included in the specification. I don’t know where that stands now. However, with one estimate of 35,000 ISs across the industry at one point at perhaps at a price of $25,000 per installation, this would amount to another additional investment of $875 million plus ongoing maintenance with no added PTC or CTC value in that the Control Points are being monitored by PTC.
• A 220 MHz wireless data network is being installed without having performed any practical data modeling on what is really required for PTC, and without consideration of other technologies, including the 160 MHz network already in place. This was clearly a political move by NS and UP that had purchased the spectrum prior to and without knowledge of the PTC mandate. This amounts to a minimum $1 Billion unnecessary capital investment plus ongoing maintenance.
• Lastly, ITC did not involve the transits & commuter railroads in developing the interoperable operating rules. Hence, PTC as it stands could not prevent the recent in-terminal accidents where the passenger trains accelerated resulting in fatalities. Fortunately, this is a relatively simple fix via the use of GPS-fencing. The loss of life is already too much, and will only increase until PTC functionality is so expanded to consider the operating rules of transits & commuter railroads.
There are 4 primary technologies that should be addressed in a practical fashion as to their individual paradigm shifts within the last 2 decades that can advance both the safety and efficiency of railroads, as follows:
Communications
The U.S. railroads have been forced to install wireless data networks given the PTC mandate. Without that mandate, only a few railroads would have moved forward on their own with any urgency due to the lack of strategic wireless planning, both individually and collectively as an industry. Simply stated, knowing where the trains really are within a block (rather CTC or Dark Territory) AND the train’s speed is an absolute requirement for optimal “proactive traffic management” for medium to high density corridors, versus the crisis management that exists today given the lack of truly-scheduled operations. And, only wireless data networks can provide the necessary data for those traffic corridors. However, as noted above, the 220 MHz decision for PTC was poorly decided/forced for political purposes rather than functional / technical / economic reasons.
From a long term, strategic perspective, what are the railroads doing to take the most advantage of this wireless data infrastructure now that they have it, both individually and collectively as an industry? I expect little at this point.
Positioning
For the last century, track circuits have provided the necessary positioning information as to track occupancy/vacancy for train movement integrity for most of the railroad operations across the globe. Interestingly, 1/3 of the U.S. freight trackage, referred to as Dark Territory, does not use track circuits but rather communications between the train crew and dispatcher that uses a train sheet (now computerized- referred to as “conflict checker”) to manually determine occupancy / vacancy of track allocations. Now, with virtual positioning, e.g., enhanced GPS, those track circuits can be eliminated for the majority of railroads with the availability of wireless data and “vital” back-office traffic control software (which is akin to the conflict checkers used for Dark Territory) . It was with this practical engineering point in mind that my consultancy designed Virtual CTC (VCTC) for the railroads of both Egypt and Kazakhstan. There is at least one U.S. supplier that can deliver a VCTC-type system currently. But, don’t look to traditional CTC suppliers, in Europe especially, to provide such systems in that there would be a substantial loss in their revenues given the avoidance of wayside infrastructure required for CTC & ETCS-L2, as well as the on-going maintenance.
Traditional CTC engineers will argue that there will be the loss of broken rail detection / protection with the elimination of the track circuit. However, consider the following points. First, there are other technologies that can provide for such detection / protection, most notably the advancing fiber optics based systems as offered by at least Frauscher (www.frauscher.com). Second, many railroads across the globe do not consider broken rail detection / protection to be a necessary requirement for their railroad. Third, in the U.S., 1/3 of the freight trackage is Dark Territory and without track circuits. Hmmmmm!, FRA hypocrisy at work.
IT Processing
Since the 1970s, the IT processing platforms have advanced from mainframe to client/server to the cloud. But, what is still missing is that of the Mobile Node, i.e., the locomotive-borne IT platform. PTC has now established that for safety reasons, but with only limited expansion in to business applications, e.g., locomotive engineer performance. My development of the first overlay PTC was designed as a mobile node to address the shortcoming of BNSF’s ARES system back in the 80’s that provide limited PTC functionality via the back-office system. ARES’s design was highly susceptible to wireless data issues as to reliability and throughput. But then again, BNSF was constrained by on-board technology at that point. We are now past that with PTC, but where is the strategic perspective to take advantage of that mobile node as to customer service, dynamic work order, car monitoring, train diagnostics, track diagnostics, schedule performance, etc.?
IT Architecture
All railroads operating since the 70’s unquestionably have a Silo based IT Architecture (SITA), i.e., systems developed on an individual department by department basis without effective data interaction between the department’s systems. Certainly, SITA was justified with the introduction of the main frame computers at that point. However, SITA results in the duplication of data collection, storage, processing, and distribution of critical operating and administration data. This duplication results in both inefficient and unsafe operations. What is needed instead is an Enterprise IT Architecture (EITA) for the railroads, both individually and collectively as an industry.
My consultancy developed the first known design of a generic railroad EITA. This was done for Kazakhstan’s railroad, KTZ, that eliminates the tremendous duplication in the handling of data classes by disparate systems. EITA is Based upon a Single Source of Truth (SSOT) concept of designating singular data processes for generation of critical data. The classic approach to designing an EITA is referred to as Business System Planning (BSP) as first introduced by IBM in the late 60s (management consultancies have their own versions, but the basics are the same). The BSP process is very logical, but intensive, and it requires a firm commitment by upper management to participate because it takes on the individual departments’ IT fiefdoms. For further insight on EITA, I suggest my August 21, 2016 posting “The Market for EITA” on this blog in the “Railroad Business” category of postings on the right side of the Homepage.
For the U.S. freight railroads, it is critical that the EITA be extended to an industry level given the substantial amount of interchange between railroads. Simply stated, individual Class Is cannot run to schedule if the connecting railroads are not operating to schedule. To do so requires an efficient and timely exchange of operating status. That interchange of data does not effectively exist today due to both technical reasons as well the lack of truly scheduled operations by the individual Class Is.
So! Considering the ITC situations noted above, should the railroads continue to rely on their engineers for technology advancement given the lack of a bottom line perspective? Clearly, the answer is NO! Also, the solution is not to look to many of the traditional suppliers because advance solutions can lead to reduced revenue due to lower capital investment and reduced on-going maintenance.
The answer to truly advance the safety and efficiency of railroad operations is to employ Strategic Technologists that can blend economics (business cases) with technology advancements to address specific advanced operations in a practical fashion. Such individuals are not employed now by railroads to my knowledge. Interestingly, the Class Is hired hordes of MBAs with the passing of the Staggers Act in 1980 to deal with the deregulation of freight railroad marketing. But now, it is well passed the time to bring in MBAs to address the practical tactical and strategic deployment of advancing technologies. For further insight, I suggest reading the article “Six IT decisions Your IT People Shouldn’t Make”, Harvard Business Review, November 2002, and substitute “Wireless” for “IT”.
In closing, I offer a suite of courses regarding Railroad Immersion (rational railroading basics), PTC, Advanced Traffic Control & Management, and Enterprise IT Architecture that address the spectrum of points noted above. These courses have been used by railroads and suppliers alike, both in the U.S. and internationally. A PDF brochure is available upon request. I am best reached at comarch@aol.com for comments and questions.
“Teddy Bears” Revisited Again
Throughout 2010 I introduced a series of “Teddy Bear” (TB) postings on this blog. TBs are the perspectives of railroad management, regulators, and suppliers that provide them comfort in thinking that what they are doing is appropriate. However, the truth can be quite different when addressed objectively by those not financially or organizationally compromised by being objective, e.g., an independent consultant.
TBs that were addressed then included the following:
• No Time For Strategy (November 2010)
• Train Dispatching is Too Difficult for That Math Stuff (August 2010);
• Digital Authorities are Vital (July 2010);
• PTC is Vital (June 2010);
• Operating a Railroad Safely Requires Signaling (June 2010);
• There’s Nothing Vital in Dark Territory (May 2010);
• PTC Delivers Business Benefits (May 2010);
• We Run a Scheduled Railroad (May 2010);
• CAD Delivers Traffic Management (October 2010).
Since then, additional postings have gone into further depth for several of the TBs with additional issues identified without the TB notation, including the following:
• Real time data is the Real Thing for structuring technology solutions;
• My railroad can run to schedule without consideration of other railroads;
• The railroad environment is unique and therefore requires unique technology solutions. Hence the railroads’ technicians must do the design;
• Only traditional suppliers can possibly understand railroad operations;
• It’s all about the main line – yards operations are secondary;
• Regulators must only accept “zero-tolerance” for operational risk;
• The Service Design folks can’t deal with all the exceptions that occur;
• Our railroad’s IT architecture is perfectly okay in that it has evolved over 50 years;
• In just a couple years it will be somebody else’s problem.
Sooooooooo! Postings to follow this one will hit the TB trail again in that there have been, and have not been, major changes in the technologies and the mind sets of railroad and supplier management, respectively. This is such a fertile field for discussion, that I am pressed as to where to start. I see some mixture of the following perspectives:
• Practical Technology Solutions;
• Railroads Individually vs. Collectively (Industry Perspective);
• Suppliers, Domestic and International;
• Customer;
• Regulatory;
• International Rail Operations;
• The Application of Mathematics.
Stay tuned, Please!
Your comments are always appreciated and best sent to comarch@aol.com for my consideration and possible response.
Freight Railroad Management Paradigm Shift
As a Strategic Technologist (syncing a business strategy with a technology strategy), I have focused for the last 2+ decades on the opportunities for railroads to advance both the safety and efficiency of their operations given paradigm changes in the core technologies that are required to improve both the safety and efficiency of freight railroads. Specifically, I refer to communications, positioning, information processing, and IT architecture. However, I have done so with relatively little expectation in my professional career that I could influence the conventional railroad operations practices of “crisis management” that prevent scheduled freight operations. Little had I expected that U.S. freight railroads would progressively pursue scheduled operations within their individual boundaries, yet alone as an industry given the high level of interconnection, e.g., how does a railroad run to schedule if the interconnecting railroads are not operating to schedule? One of my favorite telling comments that I consistently make is that Operations executive bonuses should be substantially, if not primarily, based upon interconnection efficiency. Expectedly, that comment has not been well received, but such financial motivation could greatly improve the efficiency of railroads, both individually and collectively as an industry. One notable exception has been that of Norfolk Southern (NS) with its advance traffic control and management systems. But, as far as I can tell, the remaining Class Is have yet to make significant changes given their conventional management mindset that it is all about running long trains and/or reducing crew starts, but at the price of inefficient use of primary resources, e.g., locomotives and crews. BUT now, there is now a potential of a paradigm shift in rail management that can be hopefully synced with core technology paradigm shifts. This is a paradigm transition from “crisis-based” management to “pragmatic” scheduled operations.
SCHEDULED OPERATIONS
Scheduled operation is seemingly a simple concept to understand, i.e., there’s a lineup of train movements. But, that lineup is quickly corrupted with the poor handling of supporting resources, e.g., track time, locomotives, crews, maintenance, derailments, customer pressure, and of course the lack of reliability in the interchange with foreign trains. Consider the following example.
About 6 years ago I was engaged by the VP Operations of a Class I to determine why there was excessive crew deadheading and rest. Within 3 days the primary reasons were clear. Arguably, the most obvious was that Yard Masters were initiating trains on the line-up without any follow through to ensure that many of trains would actually run. The phrase used by Crew & Locomotive Management was that there were “ghost trains” that they had to continually challenge before assigning their respective resources. However, the amazing finding was that Operations stated that they couldn’t run to schedule because several of their major shippers scheduling their trains.. What Operations fail to accept is that those shippers were doing so because they couldn’t rely on the railroad to meet their requirements. For Operations, this was their excuse as to why they couldn’t run to schedule. But the truth is that the railroad’s failure to maintain schedule had forced the shippers to make such demands. Simply stated, Operations was at fault.
With the exception of the interchange issue noted above, passenger airlines are confronted with the same resource management issues as freight railroads, and yet they operate quite well to schedule, weather permitting. So! What permits the airlines to operate to schedule versus U.S. freight railroads? I will address that point below, but first it is fair for you to question what the big deal is about operating to schedule? The answer to that question is quite simple as to concept, but not achievable without the proper management mindset and supporting technologies.
Running to schedule means that the management of the primary operating resources are in sync with the train lineup. That means from a railroad perspective that the schedules are in place for each primary asset, e.g., track time, locomotives, crews, yard tracks, and rolling stock. This means, for example, that 1) there are no excessive pools of locomotives, 2) crews are properly aligned with minimum deadheading, etc. This also means that trains may run short based upon customer service performance. Granted excess resources (referred to as “slack resources” in mathematical terms) are required when exceptions occur, e.g., derailments or weather. BUT, the slack resources required to handle exceptions in scheduled operations are substantially less than those that are required for crisis management. This means that responsible management must consider the cost of excessive slack resources, e.g., locomotives @ $2.5 million each, excessive crew rest and deadheading, the cost of poor customer service, etc. These are costs that are not now being considered, I believe, by conventional railroad management; these are costs that greatly affect the Operating Ratio of railroads. It is this point where a paradigm shift in rail management can really pay off. VOILA! Enter Mr. Hunter Harrison with a “top down”, integrated management perspective instead of a fragmented rail department by department perspective of conventional freight rail operations predominate in the U.S. freight railroads.
RAIL MANAGEMENT PARADIGM SHIFT
In March 2017, Mr. Hunter Harrison became the CEO of CSX. To the limited extent that I have tracked his career and operational philosophy at CN and CP, this is an individual with an unprecedented perseverance that can revolutionize CSX’s operations to pursue pragmatic scheduled operations. However, to do so involves 2 primary perspectives, i.e., 1) within an individual railroad’s boundaries, and 2) addressing the industry perspective of scheduled operations given the extensive interconnection with foreign roads that are not themselves operating to schedule.
INDIVIDUAL RAILROAD
Mr. Harrison is expected to drive CSX to execute an operations perspective as he did with CP and CN relative to CSX’s market not subject to interchange. However, to do so CSX will need to make some technology changes, most importantly Enterprise IT Architecture (EITA), as described in a previous posting on my blog, “The Market for EITA”, Simply stated, EITA minimizes the duplication in the generation, storage, processing, and distribution of data for the railroad’s operating systems. It is EITA that major passenger airlines have deployed to operate most efficiently as to scheduled operations.
U.S. FREIGHT RAIL INDUSTRY
As to an industry perspective of scheduled operations, the EITA perspective is greatly important as well to ensure the efficient exchange of data as to what each railroad is doing relative to interchange. Actually, EITA and supporting technologies are relatively simple, but unquestionably quite difficult to achieve until the primary railroads buy into scheduled operations as will undoubtedly be demonstrated by Mr. Harrison within CSX’s boundaries. This is a railroad politics issue.
BOTTOM LINE
With the appointment of Mr. Harrison as CSX’s CEO, I have never been more encouraged as to the possibility of U.S. freight railroads moving towards scheduled operations, both individually and as an industry. The technologies are available to do so, but the conventional operations’ mindset will have to make a major paradigm shift for several Class Is.
If you are interested in the above perspective, you can check out my article in the April, 2017 issue of Railway Age, titled “Enterprise Perspective” (pages 53-54). Also we can discuss further by contacting me at comarch@aol.com or 904 386 3082.
Rail-izing Positioning
Having lived in New Orleans (NOLA) for nearly a decade, I adopted the “positioning” methodology used by locals for locating a bar/restaurant/whatever in that crescent shape street infrastructure that romances the curve of the Mississippi. With such a fan-shape set of cross streets, one could not really use the North / South & East/West terminology that makes sense in cities with a rectangular street infrastructure. Rather, the folks in NOLA refer to a bar/restaurant/whatever as being Uptown or Downtown & Lake side (Pontchartrain) or River side (Mississippi) of the particular street. And, for many it seems, this is easier to remember and explain when jumping into a cab during a night of New Orleans’ revelry.
In the railroads, the positioning technology for tracking trains for a century or so has been to define the “block” of the track infrastructure occupied by the train without any accuracy of where in the block the train resides or at what speed it is traveling. And, unlike the case for NOLA folks, this positioning methodology doesn’t make sense anymore as railroads look for more capacity out of their current infrastructure. The railroad’s block perspective is due to the use of track circuits in conventional signaling operations for determining block occupancy. And even worse, roughly 1/3 of U.S. freight trackage does not even have track circuits for positioning – what is referred to as “Dark Territory” where the trains only “appear” to the dispatcher in spatial chunks of 20-40 miles when the train engineers seek additional movement authorities.
Now, thanks to the U.S. Federal mandate of PTC, the railroads are required to implement a wireless data infrastructure. In my opinion this is the primary value of the mandate since PTC is far from being cost justifiable on safety benefits. Rather, PTC is a Godsend for railroads, whether they recognize it or not, because the mandate has forced the majority of railroads in the U.S. to make the transition to the digital age of wireless data that most Class I’s had been resisting due to the lack of a strategic technology plan aligned with a strategic operating plan, i.e., strategic railroading. But, what has yet to be railized by freight railroads is that the “virtual age” is upon them. Specifically, the use of virtual positioning technologies supported by the availability of wireless data can greatly reduce both capital and maintenance cost of railroad operations while significantly increasing the capacity.
The PTC mandate has forced the railroads to develop an accurate on-board platform that exceeds that of GPS alone. The BAD news is that this component has been designed by technicians instead of technologists (who provide a bottom line perspective of the use of technologies) to far exceed the requirements for PTC. BUT, the good news is that this component provides the basis to make the transition from CTC to Virtual CTC (VCTC), both along the main line and in interlockings.
As presented in my previous posting on this blog, Railroads and the Virtual Age, VCTC means replacing physical block occupancy technologies, e.g., track circuits & axle counters, with virtual technologies that include an expansion of GPS with additional positioning technologies, e.g., tachometer, accelerometers, gyroscopes, GLONAS, etc., that are integrated via a Kalman filter (check Wikipedia) to achieve amazing, reliable accuracy even when GPS is not available in a tunnel, for example.
While a natural for mainline, VCTC’s capability with the addition of moderately accurate End-of-Train (EOT) positioning means that interlockings can use virtual technologies as well. After all, what is the real difference between mainline and interlockings? Answer: there really is not any difference that the proper use of technologies can’t resolve if technologists are involved.
BOTTOM LINE: The pursuit of VCTC, both along the mainline and in interlockings, offers freight railroads the opportunity to dump CTC. This is a fantastic opportunity for railroads as to both costs and efficiency if they can get their heads out of conventional operations. However, this is not good news for traditional CTC suppliers that benefit from the revenue of capital-intensive CTC infrastructure and the on-going extensive maintenance.
Welcome to the virtual age, you all. Even the NOLA folks have adjusted to virtual positioning (e.g., Google Maps), as we all have. But, they continue to use the uptown/downtown & lake side/river side description that is part of the charm of New Orleans. However, railroads don’t operate on charm. They operate on the bottom line, and VCTC along the mainline and in the interlockings is the future.
Railroads and the “Virtual Age”
This is my first posting in over a year. I have been working on redesigning a VCTC solution (see VCTC category for postings on that subject) for Kazakhstan’s railroad, KTZ. That project is now successfully completed – So, back to the blog.
Four years ago I made a posting about “Significant Digits” Below, I expand upon that perspective relative to railroads making the transition to the “Virtual Age”. This discussion was published in the Railway Age’s C&S Buyer Guide in December, 2014. It is not available digitally, so I provide it below.
As an increasingly mobile society we have all experienced major changes in our way of doing life with the shift from analog to digital technologies: wireless, IT, and positioning. And, we have done so at a much more rapid rate than many industries, including freight railroads. Of course, our individual situation of adopting new technologies is much simpler than for a railroad with 10,000s of radios, 10,000s of miles of track circuits, 1,000s of locomotives, and 100,000s of rolling stock. However, there is more to the lack of transition for railroads than just that of massive fixed and mobile technology base and the necessary financial investment. There is also an inherent thought process for engineers today that didn’t exist a half century ago prior to the introduction of the digital age. And now the virtual age is upon us, and its opportunities for railroads will be delayed as well unless engineers apply the art of engineering via approximation versus the science of engineering via precision.
The Analog Age
For those of us who completed our formal engineering studies before the 70s, the practicality of the slide rule, a.k.a. the slipstick, is well appreciated. This intriguing device of a sliding set of scales between 2 fixed sets, miraculously performs multiplication and division via the addition and subtraction of logarithmic-based linear distances. This analog calculator was the answer to the engineer’s prayer to replace paper and pencil for performing an endless flow of operands encompassed in engineering equations. But to use the slide rule, it was necessary for the engineer to accept that the solution would not be precise, but rather in the form of “significant digits”, i.e. limited to only 3 to 4 digits of relevance with preceding or tailing 0s. Additionally, the engineer had to mentally calculate the placing for the decimal in that an answer of .27 and one of 2,700 appeared the same on the slide rule. This dealing with significant digits and powers of 10 created a unique discipline of engineering as to problem solving by approximation. This is a discipline that is now lost to today’s engineers. And, this loss is resulting in over-engineering, e.g., PTC, and not developing pragmatic solutions for primary challenges to advance a railroad’s efficiently and safely with the advancement of wireless, IT, and positioning technologies.
The Digital Age
With the introduction of the digital personal calculator in the early 70s, the art of approximation quickly gave way to absolute precision. This is precision which is instantly, effortlessly provided to the user on a hand-held device’s green-lighted displays. Additionally, if one requires a discounted cash flow, for example, then only a single pressing of the appropriate function key is required once the data has been entered. The mind is given the absolute, precise answer without thought, without question, and unfortunately without the personal responsibility to truly understand the underlying mathematics. This mindless precision, in concert with the use of apps and software packages, has resulted in a substantial reduction in creative, practical engineering.
Unfortunately, the transition to digital for railroads has done little to improve the performance of railroad’s primary operations and processes. Dispatchers for most of the U.S. freight railroads are still working with the same non-intelligent CTC platform based upon where the trains were at some point within fixed blocks, but not where they will be and whether or not they’re even moving. Subsequently, the performance against schedules for these railroads suffers as to track time and the resulting inefficient utilization of key operating resources including locomotives, train crews, yard tracks, and maintenance crews.
The Virtual Age
Perhaps most advantageous to railroads, versus other industries that manage mobile resources, is the arrival of the virtual age where physical positioning technologies can be replaced with virtual positioning based primarily, but not solely, on GPS. As such railroads have the opportunity to reduce both the costs of operations as well as increase the efficiencies and/or safety in three primary areas: traffic control (mainline and interlockings), traffic management, and scheduled operations. Each of these areas is described below as to “What Is” and then as to “What Can Be” by applying creative engineering focused on the art of approximation, pragmatic precision if you will.
Traffic Control
Traffic control systems provide the vitality (integrity) of train movements along the mainline and within interlockings by generating the movement authorities provided to trains, of which there are 2 basic types used for U.S. freight: signaled and non-signaled, a.k.a. dark territory.
What Is: I often comment on the sanity of dark territory operation, especially when compared to signals, as to its providing cost-effective capacity and safety for small to medium density rail corridors up until now. Approximately ½ of U.S freight rail trackage is dark territory, albeit 1/3 of that is nested with signals referred to as ABS. In the classes I teach on railroad operations and PTC, I point out that signals are not installed for safety, but rather for capacity. That is, dark territory is safe, but its capacity is constrained due to the manual processes involved in tracking trains and transmitting / rolling up movement authorities. Hence, the use of signals is justified only on increasing capacity, but at a phenomenal cost of both capital investment and on-going maintenance expenses.
What Can Be: The creative engineer nurtured on the art of approximation should ask, “In this digital / virtual age, what can be done to replace or minimize the manual processes so as dark territory could replace a significant portion of CTC, thereby greatly eliminating the capital investment and on-going maintenance of CTC?” Additionally, the creative engineer should consider how to eliminate the substantial physical and electrical infrastructures in interlockings that deal with positioning and routing integrity. The answer for both mainline and interlockings is quite straightforward and now very approachable for those railroad corridors mandated to implement PTC.
To replace the use of time-consuming, and somewhat risky, voice radio between the train crew and the dispatcher to deliver authorities in dark territory requires a wireless data link between an on-board platform to display the authorities and the back-office conflict-checking software that generates the authorities. This concept of digitized authorities should be readily acceptable to most railroads at this point given that PTC’s implementation will provide the necessary wireless data infrastructure and the on-board display. However, to release (roll-up) authorities automatically will require positioning accuracy that must include both the train’s head end position provided by the PTC onboard platform, as well as the end-of-train position which is not delivered by PTC. The latter can be provided either through some form of end-of-train device and/or a default train length depending upon the headway between trains for the railroad’s corridors. The combination of these two positions provides “virtual” positioning” thereby eliminating the requirement for physical positioning.
With virtual positioning, a railroad can replace fixed block operation of CTC with virtual (flexible) blocks that ideally approaches the capacity and enforcement of moving block. Hence, a railroad can replace conventional dark territory and a significant portion of its CTC with Virtual CTC (VCTC), but without the extensive capital investment and on-going maintenance of CTC or the back office complexity and extensive wireless data requirements of moving block. With VCTC, both the mainline and interlocking vital infrastructure is replaced with a software-based conflict-checking platform. And, without the need for wayside vitality infrastructure and supporting code-lines, the dispatching operation becomes a virtual office permitting location flexibility and dynamic allocation of work load, including the ability to manage interlockings locally and/or integrated into a dispatcher’s responsibilities. Lastly, an additional benefit of VCTC with its virtual positioning based upon end-of-train, is that the loss of train integrity can be detected both within and outside of the boundaries of a train’s authority, which is a critical concern for many railroads across the globe.
Traffic Management
Traffic management serves the business perspective of moving the trains subject to the capabilities of the traffic control systems in place. Ideally, this is the challenge of the dispatcher to manage a plethora of variables to manage train movement based upon an optimized schedule provided by the railroad’s Service Design.
What Is: For most U.S. freight railroads, traffic management is crisis-based, management that handles traffic conflicts as they occur. This type of management is inherent in CTC operations given fixed block positioning of trains without knowledge of train speed. Additionally, for optimal dispatching there are numerous variables whose continuous evaluation are beyond the capability of the human. Dispatching continues to be more an art than it is a science.
What Can Be: The creative engineer nurtured on the art of approximation should ask, “In this digital / virtual age, what can be done to eliminate the constraints of crisis-based management. The answer is to make the transition from reactive to proactive by feeding timely train position AND speed data to mathematical planners that provide recommendations to dispatchers. The recommendations are based upon “objective functions” that represent the business model of the railroad. Again, the implementation of PTC will provide the necessary wireless network and on-board platform to provide the train status data.
Scheduled Railroading
As with major passenger airlines, the highest level of operational efficiency is based upon having a schedule that integrates the management of the primary assets to optimize the business objectives of the company. For railroads, those assets include track time, locomotives, train crews, yard trackage, and maintenance crews. And, as demonstrated by the passenger airlines and only a few major railroads across the globe, the IT architecture has to be so designed to provide the efficient and handling of critical operating data.
What Is: The truth is that the majority of US. Freight operations do not operate to schedule with any significant level of positive consistency. The railroads have their reasons of why this is so. But, based upon my engagements to study this for clients, the reasons are most often excuses by rail management to shift the responsibility to areas not directly under their control. My favorite example is a Class I that blamed the lack of scheduled operations on a major customer that insisted on setting up the schedule for its trains. In fact, the customer did this because the railroad had failed to maintain a schedule. There is also the now Catch 22 of scheduled operations given the high level of interchange between railroads. That is, how can one railroad operate to schedule if the roads with which it interchanges aren’t doing so, and visa versa?
The cost to the railroad of not operating to schedule is not just the loss of rail capacity, but also the increased level of key resources required (slack resources) due to their inefficient usage, including locomotives, train crews, and yard capacity.
What Can Be
The creative engineer nurtured on the art approximation should ask, “In this digital / virtual age, what can be done to improve the level of scheduled operations both within and beyond a railroad’s borders. The use of, and commitment to, proactive traffic management provides the first step. However, achieving scheduled operations is an industry issue as well. Therefore it is necessary for railroads to individually and collectively develop Enterprise IT Architectures (EITAs) and an Industry IT Architecture (IITA), respectively, that present an IT structure for operations and asset management based upon virtual positioning.
Bottom line: I see three major challenges for railroads to make the transition to the virtual age relative to the areas discussed above. First is the change in the mindset of the railroads’ engineers to work via pragmatic engineering so as to think objectively about virtual positioning. Second, is the shift in the discipline of labor to work with on-board enforcement/positioning and software-based, back office vitality. Lastly, and perhaps the most critical, is that traditional traffic control suppliers will not provide such solutions naturally in that their revenue in marketing VCTC and the associated on-going maintenance costs are greatly reduced.
VCTC is the future, and it will happen. While the slide rule lasted 3 centuries before its obsolescence, I’m guessing that CTC and crisis-based management won’t make its first century at 2027 for many U.S. freight railroads.
Shaken! Not Stirred
About 20 years ago there was a cartoon in The New Yorker, a monthly periodical best known, arguably, by non- New York City residents for its cartoons. This cartoon showed two wealthy gentlemen (in the style of the Monopoly game millionaire) lounging in the bar car of a passenger train with their martinis. (I think of them as Reginald and Wilfred). Reginald states: “This is a lousy martini. (pause) This is a Hell of a way to run a railroad”.
Being a martini enthusiast (only gin of course), I can appreciate the nuance of making such an evaluation.
Back then, this now-shallow perspective was in actuality one credible way to evaluate passenger and freight rail operations in that it was “take or leave it” from the railroads’ perspective of running their railroads. That is, railroads provided the service that they wanted to provide given their monopolistic position as to transport. However, beginning with the availability of the interstate roads during the Eisenhower administration, followed by the passing of the Staggers Act in 1980 that deregulated the freight railroads as to the price that they could charge for services, there was a gradual, but sustained shift to the customer’s perspective. That is, with these two major game changes of the interstate road infrastructure and the Staggers Act, entered competition not only between rail and truck transport, but also competition between railroads.
In the last several decades, both passenger but primarily freight railroads have taken on a different perspective; a perspective on what technologies can deliver to make a railroad’s operation both more safe and efficient. I must state first of all, that US railroads, both passenger and freight, are extraordinarily safe, especially when compared to operations across the globe. (See previous posting “ What Price Safety” for some additional insight on this point. But, I need to go back to the martini point.)
There are martinis, and there are martinis. James Bond’s infamous standard of “Shaken, not stirred” makes the point. But first, I should note that based upon an independent analysis of literature regarding James Bond’s life style, it has been determined that he was quite a drinker with his consumption of an average of 45 martinis within a given week. OK, so that is 6 +martinis a night which makes him somewhat suspect as to his objective credibility as quoted by Dorothy Parker of Algonquin Round Table fame: “ I like to have a martini, Two at the very most, After Three I’m under the table, after four I’m under the host.” So! 6+ martinis in an evening is clearly past the line.
The point of shaken, not stirred, can be applied to railroad operations, me thinks. The difference between the two versions of martini preparations is that if a martin is shaken, then the ice can “bruise” the gin, where as stirred is like “Whatever, don’t mess with my gin.” Therefore, the parallel to railroads, you may ask, is that railroads have only been stirring their operational processes for the last several decades, at least, by simply upgrading their primary core technologies, i.e. communications, positioning, and IT, most noticeably with the shift from analog to digital, and the integration of distributed decision making platforms with the back-office infrastructure. But, railroads have not truly shaken up their business processes, a.k.a. process reengineering (dynamic work order is a good example), to take advantage of how the operation can change with advancements in technologies. Arguably, the most critical example is that of the management of train movements as to the underlying means of functional vitality (how movement authorities are generated) and the efficiency that an be achieved with more timely and accurate positioning of trains to advance from crisis-based fixed block operation to that of proactive, flexible block.
In this light, the passing of the Rail Safety Improvement Act of 2008 that mandates PTC deployment across most of the freight and transit rail operations in the U.S. has been both a blessing and a curse. That is, the PTC mandate is forcing the railroads to deploy an industry-based wireless data platform with mobile IT platforms on locomotives. That’s super. But, the over-engineering of PTC and the lack of technology strategy across the industry, has dampened the progressive advancement of business processes that can use these technologies. Simply state, there is no business strategy in sync with a technology strategy, a.k.a. Strategic Railroading, in most of the railroads, yet alone with an industry perspective for freight operations.
So! Do you want to shake things up in your railroad – or your client railroads if you are a supplier? Or do you just want to stir the same old stuff, the same old processes, albeit with upgraded technologies? If you want to shake things up, then consider what can be done with virtual positioning and wireless data technologies. For one example, click on the VCTC category on the right side on the home page of this blog and review the postings.
Finally, permit me to add my personal notes on gin. With my 46 years of legally enjoying gin across the globe, I offer my following evaluation of several:
- Bombay Sapphire: a classic, a standard, not insulting to anyone.
- Hendricks: Just too much rose – only good for 1 a month
- Blue Coat: made in the U.S and excellent, but then again keep it down to several week if you drink your martinis dry.
- Gibson: my favorite when in France – can’t find it in the U.S.
In the spirit of full disclosure, I should note that I wrote this posting while drinking wine only. Wine is for thinking and writing … and Martinis are for neither.
THINK
When I joined IBM in 1970 as a Marketing Representative to sell computers, I was presented with a 10 inch plaque for my desk that simply stated “THINK”. I still have that plaque on my desk. Since that time of the commercial introduction of computers, corporate America has been proceeding through 3 stages of THINK as to their business environment. As addressed below, the U.S. freight rail industry has kept pace with the first two stages of Digital and Process Reengineering to a respectable extent, but the railroads have yet to fully embrace the 3rd stage, Connectivity, which is extremely critical for railroads to manage their primary reliance on mobile resources, both individually and collectively as an industry.
1: Digital
With the marketing of computers in the 70s, IBM realized that its first primary challenge was to educate its clients’ executives as to the opportunity to use computers to replace the straightforward processes that were handled by clerks, e.g., payroll, inventory update, accounts receivables / payables, etc. These sequential processes of updating data bases were readily handled by the predominance of magnetic tape-based, sequential record data bases. THINK back then was how to make the business case for top-level management to lease these intimidating physical electronic monsters (purchase was not an option at that time with IBM).
To take on this challenge of converting manual (analog) processes to digital ones, IBM was hiring two basic types of disciplines, i.e., MBA’s and teachers. The former (which I was) were used to provide the business case, e.g., the discounted present value of advancing a business process, and the latter were used to present the business case. With the phenomenal amount of Sales School training that IBM provided to its marketing personnel at that time, these two disciplines were blended to provide an unprecedented marketing force. We didn’t have PowerPoint, of course, but we were well trained on paper “flip chart” presentations that permitted us to efficiently make our “bullet” presentations to client executives.
As a side point, IBM’s Marketing Representatives were also trained on basic marketing/sales concepts such as
- Shut up once you asked a question of the client so as to permit that individual to reach his / her own conclusion based upon what you had presented;
- Once the executive agreed to the sale, you introduced no additional thoughts;
- It takes 10 cold calls to close 1 deal;
- Do not disparage a competitor directly. However, one could state demonstrated truisms, e.g., “Burrough’s computers perform 1/3 slower on your accounts receivables as demonstrated by the benchmark test that we performed with your data.” If you violated this principle, then it was very likely that you were soon on the street.
- One never had alcohol at lunch – unless the customer insisted, at which point you didn’t go back to your office or to that of your clients; and
- One dressed based upon the dress code of the customer – as long as it was a dark suit and a white shirt.
While IBM set the high water mark for ethical behavior in the Data Processing industry (the phrase for Information Technology back then), if not elsewhere, there was no question as to the benefit of such behavior including a most important advantage that an IBM business card would get you pass the secretary of almost any executive. Those were the good ole days, in that marketing was above board. Again, an IBMer would be fired immediately if s/he violated IBM’s sense of business ethics; ethics that were and are still unmatched in the US business (and political) environment in my opinion.
At this point in time, THINK was more about hardware than it was about software. Within a decade or so, the perspective of THINK advanced to Stage 2 with the transition from sequential tape processing to that of dynamic, direct access to data via affordable disk drives and the associated advancement in software.
2: Process Reengineering
For the last several decades, the concept of THINK has been all about functional understanding of what a business process is attempting to achieve. Some readers may recall the rush to Process Reengineering in the 90s. Simply explained, process reengineering meant reTHINKing how processes were handled as to workflows given the use of computer processing and wired telecommunications that integrated otherwise disparate entities in a company. This was a holistic perspective of the company and, in selected cases, an industry. However, the ability to reengineer processes was most often directly related to the ability to use wired communications between the sub-entities for the purpose of distributed, but integrated processing. However, for industries that are primarily about managing mobile resources, e.g., railroads, process reengineering was greatly limited in that a wired path can’t be attached to a locomotive. As a side point, IBM had developed an extraordinary concept of Business System Processing (BSP), a.k.a. Information System Processing (ISP) that proceeded process reengineering by 2 decades to optimize data storage. I have a posting on BSP that can be found by clicking on the category of Strategic Railroad on the right side of the home page and paging down to It Takes an Industry: Process, April 14, 2012.
3: Connectivity
With the ubiquitous availability of wireless data networks now, whether commercial or private, the 3rd state of THINK now also includes who “THEY” are that are involved in the functionality. This is an issue of connectivity, with a minor in functionality. For railroads this means tightly integrating the management of its trains, crews, locomotives, and maintenance with the back office systems based upon a very simple principle: “Where are my trains (I mean really where are trains other than just a block), AND at what speed are they traveling. This is all about running a truly-scheduled operation. The ultimate, but largely unachievable, example of this is moving block. But, short of that is the role of Proactive Traffic Management (PTM) that minimizes the consequences of traffic conflicts in dense corridors, and that can support “flexible block” operations versus the inefficiency of fixed block operations with traditional CTC operations. I have a posting on PTM that can be found by clicking on the category Strategic Railroading on the right side of the home page, and paging down to Degrees of Separation, December 26, 2012.
With the mandate of PTC, the freight rail industry has been forced to develop an industry-wide wireless network, which is clearly the true value of the PTC mandate given that our freight railroads are already extraordinarily safe. For those individuals that are still confused about the business benefits of PTC, please, please understand that PTC does not deliver business benefits. It is the availability of a wireless data network required for PTC implementation that can provide those benefits – as evidence by NS and BNSF, at least, that are achieving those fatuously proclaimed PTC benefits by some misguided individuals without the implementation of PTC.
An article of mine is scheduled to be published in the forthcoming C&S issue of Railway Age, and it will describe the pursuit of this stage, not just from an individual railroad standpoint, but also as what can be done to increase the efficiency of the U.S. freight rail industry. The underlying principle here is that a railroad is limited to its ability to run to schedule if the railroads with which it interconnects are not running to schedule, and visa versa. In my opinion this Catch 22 can best be resolved by 2 means. First, railroads require PTM (with a glazing of flexible block), and Second, the annual bonuses of railroad executive must include a performance measurement as to Industry Efficiency. However, it is unlikely that the pursuit of industry efficiency will happen until there is a true Strategic Industry Railroading perspective that involves all of the Class Is. So! Who will provide that industry strategy? Hmmmmmm! It appears that there is a role for an independent consultant. Please call: (904) 386 3082.
Innocence Lost: Rail Operations
In the previous posting on this blog, I wrote about the Innocent Lost of Engineers, meaning that with the introduction of the commercially-available, hand-held digital calculators in 1972, engineers began to lose their ability to approximate solutions for a series of calculations with various powers of ten involved. For example: engineers of that generation could quickly determine that 3.936 X 44,888 / 1,987 is somewhere in the range of 4x(90×500)/(4×500) …hence … 4×90/4 … hence … 90. Such capability was an art that complemented the use of the now-obsolete slide rule, an analog calculation device that performed multiplication and division by literally sliding sticks ruled with logarithmic scales. This lack in the skill of approximation for engineers not experienced with the slide rule is unfortunate because it is critical for thinking on one’s feet to obtain answers to move through complex situations efficiently, albeit not accurately. I also believe the ability to approximate solutions adds greatly to one’s level of creativity. Unfortunately, engineers of today feel compelled to deliver exactness limited by the number of digits displayed on their digital device. Their answer for the above problem would be 88.91754806240564…
Considering railroads, I see a significant lack of creativity with the current set of primary technicians across the industry as to their inability to “think outside of the boxcar, if you will. A case in point here is the pursuit of PTC in the U.S. where technicians are designing to extreme levels of exactness and capability that are clearly not warranted (see posting The Goods, The Bads, & The Uglies, March 5, 2013 found by clicking on the PTC category on the right side of the home page).
Now, I suggest that railroad operators are in the process of losing their innocence as well as to how they run their railroads. Fortunately, however, this is a good thing. Instead of operating a railroad as they have in the past to satisfy their own perspective of what a railroad is, i.e., take it or leave it, railroads are focusing now on customer service for the benefits of their own bottom line as well as that of the shippers by improving customer service. This customer / bottom line perspective started to evolve in the 80s as railroad executives began to recognize the increasing amount of freight traffic being captured by the trucking industry via the nationwide interstate road infrastructure. As a subject for a posting in the future, this was the genesis of the intermodal industry that has now replaced coal freight revenue as the top source of revenue for several Class I railroads.
As to operators losing their innocence, I see 4 phases that will permit them to eventually maximize the use of their resources while delivering optimal customer service.
- Resource Rationalization
- Scheduled Operations
- Proactive Resource Management
- Industry Management Perspective
Unfortunately, as explained below, most of the major U.S. railroads have only managed to achieve the first phase of resource rationalization in the last 2-3 decades. Too few railroads have begun to pursue the 2nd phase of scheduled operations, yet alone the 3rd phase of proactive resource management, and certainly not the 4th phase of industry management perspective.
1. Resource Rationalization
This phase began with the signing of the Staggers Act in 1980 that deregulated the freight rail industry in the U.S. This act introduced competition to the freight rail industry by removing the role of the now-defunct Interstate Commerce Commission (ICC) that regulated the tariffs for freight services. This first phase was managed via the infusion of MBAs in the railroads that struggled to work within the efficiency constraints of conventional traffic control systems and the associated operating processes. Such constraints included being confronted with the mindset of operators that fatuously believed that running a railroad without a true schedule was a test of their management skills. That is, a train schedule was something that was handed down to them by the ivory tower Service Design department staffed by MBAs, as “wouldn’t this be a great way to run a railroad”. But, a true operator was not being measured by such performance, but rather by his ability to work with conflicts as they occurred in traffic movements. Hence, what the MBAs provided at that point was limited to an analysis of contribution of individual rail corridors as to the railroad’s bottom, although that analysis was based upon non-scheduled operations. The result of their efforts was the shedding of rail corridors with less than acceptable performance. Unfortunately, the other primary assets, e.g., locomotives, rolling stock, crews, yard operations remained untouched as to their inefficiencies.
2. Scheduled Operations
The railroads are now into the second phase of losing their innocence with the advancements in technologies, most importantly wireless data an virtual positioning, that can provide for more timely and aggressive handling of train movements by simply knowing where the trains are AND at what speed they trains are traveling. For most railroads in the U.S., they have only begun the process of deploying the necessary wireless data networks that can provide such data. It should be understood that this wireless deployment is not due to a strategy on the part of most railroads, but rather it is a deployment due to the Federal mandate to implement PTC, a system that requires a wireless data network. I dare say that without that mandate, a number of railroads would still not being deploying such data networks due to a lack of operating strategy linked with a technology strategy (a.k.a. strategic railroading). For example, to my knowledge only 2 railroads in the US had such a strategy before the mandate to deliver the data required to improve the efficiency of their crisis-based dispatching processes.
With this additional level of timely and accurate train position and speed data, the challenge of efficiently dispatching trains increases beyond the mental capability of any dispatcher to deal with all of the variables in dense corridors. One should understand that effective dispatching until this time had been an art based upon not only the mental capabilities of the dispatcher, but also by his/her degree of experience with a particular corridor. And, based upon the principle that one can not effectively manage dispatching if one cannot measure the efficiency of dispatching, then I suggest that no major railroad had, and perhaps has, any effective measurement technique as to the efficiency of its dispatchers. Maybe, they think they do, but most likely it is based upon the conventional concept that a dispatcher should not make the same mistakes that s/he made yesterday, or the day before, or the week before, whatever.
Operating to schedule is not just about track time efficiency. Class Is are beginning to realize that the ability to run to schedule can result not only in better customer service, but also in a substantial reduction in the “slack resources” (a mathematical phrase when optimizing operations) that sit idle so as to permit some level of efficiency when locomotives are not where they need to be … or train crews outlaw … or the designated yard has insufficient in-bound tracks, etc. Simply stated, the unstructured inefficiency of depending upon the use of slack resources in a crisis-based, truly non-scheduled fashion is substantially greater than running to a schedule where slack resources are kept to a minimum to handle a substantially less level of conflicts when the schedule is corrupted…which is more the case than not.
3. Proactive Resource Management
This next phase is that which only 2 Class Is to my knowledge have taken on. I introduced PTM a decade ago based upon a very simple construct. That is, in order to minimize conflicts of mobile assets, then wireless data is required to provide the timely and accurate data of where those assets are AND at what speed they are traveling. With such information, then mathematical planners (basic algebra) can be used to predict where conflicts will occur. With that knowledge, then Operations Resource (OR) tools can be used that identify objective functions to minimize the consequences of those conflicts. For example, an objective function may be to reduce the travel time, or to maximize train velocity, for the set of trains being considered for a particular corridor, or for a set of corridors. Conventional CTC that is used across 50% of the U.S. freight rail trackage can only provide block occupancy with no knowledge of speed. For example, did that intermodal train come to a stop, and therefore the opposing merchandise is train being held on a siding for no reason? The other 50% of the freight trackage is dark territory where the dispatcher doesn’t even know which the block the train is in, yet alone the speed. Simply stated, PTM provides for flexible block operation (which is far short of the complexity, if not the questionable possibility of moving block) instead of the inefficiency of fixed block operation where trains vary significantly in length and speed. For further information on PTM, I suggest you read the posting Degrees of Separation, December 26, 2012 in the category Railroad Business found on the right side of homepage.
4. Industry Management Perspective
There is a 4th phase, which has yet to be initiated, that addresses the efficiency of the industry, and not just an individual railroad. The underlying point here is quite straightforward, but yet continues to be ignored. That is, given the substantial necessity of trains across U.S. railroads to operate within a specific region, yet alone to go from coast to coast, it is impossible to achieve the highest level of scheduled railroading if the interconnecting railroads are not running to schedule. So, there is a Catch 22 in that a given railroad cannot operate at its highest level of efficiency until the interconnecting railroads are running to schedule, but those railroads cannot operate to schedule until the given railroad is operating to schedule.
I see 2 requirements to break into this circular logic. First, the increasing use of PTM will narrow down the complexity of the interconnection challenges. Second, and most important, the annual bonuses of railroad executives need to be structured to place emphasis on industry efficiency, and not just the efficiency of their individual railroad.
Lastly, for the majority of railroads in the U.S., as well as for a number of low density corridors in the Class Is, there is still an issue of considering how wireless data, virtual positioning, and on-board intelligence (such as that being provided via the implementation of PTC), can replace their current dark territory and low density CTC operations with Virtual CTC (VCTC) as described in other postings, including videos, on this blog (click on the VCTC category on the right side of the homepage).
All of the above is really quite straightforward to understand, but the traditionalists of railroads have yet to grasp that a paradigm shift is available to them given a shift in the core technologies that is available to them: again, wireless data, virtual positioning, and on-board intelligence.