Archive for the ‘Positive Train Control (PTC)’ Category

Dangerous Railroading

Until a year ago, my professional railroading career as Class I management and an independent consultant had been almost totally dedicated to the freight industry of North America. There have been some interesting consulting engagements outside of that sphere, including a most peculiar investigation (I never knew who the true client was) into the traffic control and communication systems for railroads in the Middle East and Southeast Asia 25 years ago. But I was taken by surprise, actually shocked, when I read about the initiation of a study in that same corner of the world that would evaluate the safety and efficiency of a local railroad operation. It seems I didn’t really know what I thought I knew.

Having been nurtured for 36 years in the U.S. railroads, I had come to understand that operating a railroad safely requires disciplined allegiance to 1) safety systems, 2) maintenance practices, and 3) personal accountability. And, slack in any one of these three areas could readily result in the safety of a railroad’s operations being severely compromised. Hence, it was with the greatest dismay that I soon realized upon starting the study for the troubled railroad (hereon referred to as TRR), that it was suffering in all three areas as well as a fourth issue – the theft of critical wayside infrastructure. Given these significant problems, there have been a number of deadly train accidents across TRR, and there will continue to be unless all four areas are addressed properly. Thus, the focus of the TRR study was clearly directed to be that of safety first, and then efficiency.

The slap-across-the-face revelation for me was that TRR is NOT unique. Its dangerous railroading practices and problems are common in many parts of the world. Given the importance of railroads to emerging economies as providers of labor mobility and accelerators of industrialization – these safety and operating issues have far-reaching impacts. Thus, I have shifted the emphasis of my consulting to now focus on what railroads can do to address these 4 critical areas. In this post, I provide a brief description of each problem area as observed from my experience with TRR. Some readers will likely see similarities to their own operations . . . or their clients. Additionally, as will be addressed in subsequent postings, I will identify non-traditional, cost-effective and 100% safe solutions for each of the 4 areas. These are solutions that are not being provided by traditional suppliers that focus on the high speed passenger and/or high density freight networks across the globe. The solutions have to be non-standard / non-traditional since traditional suppliers produce and price for high speed/high density lines and these solutions can in fact result in a financial disaster for small and emerging railroads while increasing the likelihood of additional risk in their operations.

SAFETY SYSTEMS

Traditional Railroad Safety Systems

There are two primary levels of safety systems to consider in the movement of trains, i.e., traffic control and enforcement. TRR’s  traffic control is a mixture of traditional signaling (i.e., a railroad’s traffic lights) and an antiquated token block operation. While the condition of the signaled operation across TRR is understood to be below par, it is TRR’s token block operation that requires the greatest attention.

Token block originates back in the middle of the 19th Century in Britain, and its deployment across the globe was in step with the expansion of the British Empire. Simply explained, token block’s safety, as used across TRR, is based upon an operator for each section of track (block) handing a token, e.g., metal rod, to the train crew as an authority to proceed into the block. Upon exiting the block, the train crew hands back the token to the next operator and at some point receives a new token unique to the next block. In concept, token block is a safe system. But, in practice the manual processes involving the block operator and the crew can be, and have been, violated resulting in fatal accidents. For this and perhaps other reasons, various types of Radio Electronic Token Block (RETB) have replaced manual token block in Britain and elsewhere, including a relatively short corridor in TRR. But for the majority of TRR’s operation that is still manual token block, the integrity of that operation is subject to being compromised by human error. Fortunately, as to be addressed in a forthcoming posting, there are non-signaling traffic control systems that can replace token block. These are solutions that don’t require the extensive capital investment of traditional CTC operations or the overwhelming capital investment of ETCS as used for Europe’s high speed rail networks.

Traffic control safety is not the only issue associated with safe train movements. There is also the issue of train crew errors regardless of whether the operation is in signaled territory or token block, and it is the purpose of enforcement systems to prevent such errors. In TRR’s case, an antiquated enforcement approach, Automatic Train Protection (ATP), is deployed across much of the railroad. However, based upon my visits to date, it appears that the maintenance and theft of ATP components embedded in the track as well as the train drivers turning off the on-board controller so as to not be enforced for over-speeding, has rendered the system highly ineffective. To be addressed in a latter posting, ATP is quite similar in functionality to another enforcement system referred to as Positive Train Control (PTC) that is now mandated for implementation before 2016 across most of the trackage in the U.S. PTC doesn’t have the theft, maintenance, and driver abandonment problems of TRR’s ATP system.

MAINTENANCE PRACTICES

Railroad Maintenance PracticesAs suggested above, the adequateness and reliability of TRR’s maintenance procedures for wayside infrastructure and rolling stock are dubious. For the wayside infrastructure, TRR is confronted with an aging signaling system that is anticipated to have a major overhaul in the near future. However, much of the token block operation incorporates mechanical interlockings that, as with the token block equipment itself, are reportedly not up to grade. Such lack of maintenance is likely the result of two key issues. First, there is no regulatory process for providing mandatory maintenance procedures. Second, it is doubtful given just the physical appearance of the railroad overall, that governmental financial support has been anywhere near sufficient, if even budgeted.

As to equipment, I reflect on a conversation I had with a TRR executive when I asked what he thought was the most unsafe part of his railroad. Without hesitation his answer was “The brakes.” I was then told that the goal of their operation at that time was to ensure that half of the cars (wagons) in a train’s consist were equipped with working brakes – with an additional challenge of ensuring that ½ of the brake-able cars were to be placed at the beginning and the end of each train so as to reduce in-train forces.

Outside of North America, Europe and the far East, many railroads are confronted with two critical parameters that affect their ability to perform proper traffic control and supporting infrastructure maintenance. First, there is the issue of an adequately-trained work force. However, that issue can be readily handled via the use of contractors. The second parameter is the topography over which the railroad operates, and the accessibility to the wayside as well as the availability of power. Again, solutions are available, but they can be quite expensive. The point here is that railroads subjected to such parameters should consider safety systems that minimize those requirements, i.e. minimize the amount of wayside infrastructure.  However, traditional suppliers do not offer those types of systems to them – why would a supplier offer a system that has less equipment. A future posting will address this point.

PERSONAL ACCOUNTABILITY

As demonstrated by the discussion above, there is a critical lack of consistency in personal accountability across TRR in both the operations and maintenance of critical equipment. Perhaps this is due to the fact that TRR is a government-owned railroad with seemingly little incentive to address costs or revenues. Or, perhaps this is due to the lack of a regulatory body, such as the Federal Railroad Administration (FRA) in the U.S. that mandates and enforces proper procedures. Regardless of the reasons, it is clear that TRR, or any railroad, will not operate safely without a workforce totally committed to safety. To achieve that takes documented procedures, education / training, the right incentive system and discipline throughout the organization. A future posting will address these points.

THEFT

Theft of wayside railroad equipmentWhile copper wire used for pole lines has been a favorite target of thieves in the U.S. over the years, the theft of other critical components has been minimal. However, in many parts of the world, everything is fair game apparently. The treasure chest includes signaling equipment, power supplies, and in-track transponders used by Europe’s advanced traffic control system for high speed rail, ETCS. The key point here is that, as with maintenance issues noted above, a railroad should consider the vulnerability to operations and safety due to theft of critical components when selecting from alternative safety systems. The only viable solution is a system with less infrastructure to steal – but again, what supplier in their right mind would sell a system with less equipment. A future posting will address these points.

In addition to the 4 areas above, there are other significant considerations as to safe train movement operations including the use of train-integrity detection in token block operation, end-of-train monitoring of brake line pressure, wayside defect detectors, and on-board car detection systems, e.g., fire detection and alarm systems for passenger operations.

Indeed, there are overwhelming issues with the safety of TRR’s operations. The study that is being performed by my colleagues and I, will address those issues as well as identify advanced traffic management concepts that will support TRR’s increasing requirement to mix freight with passenger service on critical corridors.  I know now that there are many railroads across the globe that could benefit greatly, both as to safety and financial viability, by having such a study performed without prejudice to particular approaches, equipment, or suppliers. Such a study would take into consideration safety systems, maintenance practices, personal accountability, and theft, as well as the peripheral safety considerations mentioned above.

Your correspondence is most welcomed and encouraged.

Dark Territory’s Dynamic Duo

In the previous posting to this blog, In the Light of Dark, I introduced the concept of non-signaled operations used in the Americas that is most frequently referred to as Dark Territory (DT). In fact, there are two basic types of DT, i.e., Dark/Dark and Dark/Lighted (my terminology and not Googable).  In Dark/Dark operations, neither the dispatcher is presented with any indication of where the train is (as in signaled CTC operations), nor is the train crew provided with any in-cab or wayside signals to present the crews with the indication of the time & speed parameters of the current movement authority (a.k.a. aspects). Instead, the crew obtains the movement authority via voice radio or as data via data radio (a.k.a. digital authorities) from the dispatcher. That is, both the dispatcher and the train crew are in the dark, so to speak, as to the train position and authority, respectively.  Contrarily, in Dark/Lighted operation, the dispatcher is still unable to see the position of the train, but signals are used within the corridor to keep trains separated by block.  This use of Absolute Block System (ABS) increases the possible capacity of the DT operation by adding a second level of vitality (i.e., the generation of movement authorities) to the primary authority so as to place multiple trains into a sequential set of blocks instead of having one train hold all blocks exclusively until it releases the whole set of blocks. Although a signal engineer will declare ABS to be signaled operations, it is actually  DT in that the primary authority to get the train into the corridor was so generated. Regardless of the type of DT, two critical points remain true: 1. the dispatcher doesn’t know where the train(s) is in the DT corridor, and 2. the dispatcher doesn’t know the speed of the train(s).  But, that’s OK, seemingly, because DT is used for low to medium density operations … or is it really OK?  Actually, it is no longer OK.

Traditional railroaders have accepted that DT has limited capacity due to the manual efforts of transmitting authorities and subsequently releasing them. But, what if a railroad was to obtain the actual position and speed of trains, and then use mathematical movement planners to adjust the generation of movement authorities in a more dynamic fashion?  That is, what if a dispatcher had a Planning Platform, either integrated or independent of CAD, that could more efficiently plan the generation of authorities, and then have the dispatcher use CAD as the execution platform that it truly only is? That is, what if the dispatcher had what I have introduced 5 years ago as Proactive Traffic Management (PTM) instead of the reactive, crisis-based management of train movements (more on this in a future posting)?

Now, the question is: How much capacity can be obtained with DT operations that use the dynamic duo of digital authorities and PTM, whether dark/dark or dark/lighted?  Of course, the answer varies for each individual corridor. But no railroad, to my knowledge, has attempted to answer that question. They don’t know what they don’t know. Instead, they take the traditional signaling approach that requires heavy investment in infrastructure as well as extensive maintenance costs to ensure the reliability of the equipment. Additionally, such signaling operations in developing countries are subject to theft and deterioration due to poor maintenance given a lack of adequately train maintenance personnel.

The great news is that such capacity evaluations can be performed through the use of mathematical models not unlike those that are used to calculate the theoretical throughput of signaled operations. But again, to my knowledge, no one is using such models.  Clearly, neither suppliers nor traditional consultants that advise railroads are doing such analyses in that they will not sell anything  since 1. there is no infrastructure investment for DT other than wireless data, and 2. they don’t have operational experience with such operations, respectively. That’s where my associates and I can be brought into play.

As my team of professional railroaders and planners are pursuing with small and emerging operations in selected areas of the globe, there is the opportunity to bring those types of alternatives to railway management.  The icing on the cake is that we also can advise on the use of enforcement systems, such as PTC, so as to provide for as safe of a railroad operation that is possible with both reliable traffic control and efficient traffic management, as well as assure that a train crew will not violate their authorities. It doesn’t get any better than that.

If what I have discussed above applies to your railway, then we need to talk. By the way, my team doesn’t represent any suppliers, nor do we accept commissions from suppliers. We work for your railway’s best financial and operational interests.

The Positioning Engine – changing railroad’s core technology

The North American railroads have the opportunity to make a phenomenal paradigm shift in running their operations, both individually and collectively as an industry. However, to date they have failed to recognize the possibilities, yet alone to take a proactive position to break away from traditional railroading and make the transition to strategic railroading, i.e. syncing strategic operations with a strategic technology plan.

The reasons for such an unfortunate lack of progress are actually quite few but nonetheless difficult to overcome with the railroads’ current management teams.  In the simplest terms, the reasons reduce to the lack of a true business perspective relative to the deployment of technologies by railroads and suppliers alike.  This is due to the lack of Technologists that can provide cost-effective technology solutions that support operational changes … instead of the current terror of technicians who believe they are driven to deliver the ultimate system, i.e., technology platforms that only they can design.

The shift to strategic railroading is based upon making substantial changes in a railroad’s core technology infrastructure, i.e., the mixture of communication, intelligence, and positioning technologies.  Such changes will eliminate the constraints placed upon operations by the two traditional technologies that have been in use since the early part of the last century, i.e., track circuits and wireless voice.  Each of the three technologies that comprise the core technology infrastructure will be explored in individual postings with this one addressing the positioning perspective.

I start this perspective by first looking back to the 80’s and 90’s to several interesting, not always successful, pursuits of various positioning concepts. At that point, wireless data was beginning to get some facial hair with End-of-Train (EOT) being the first true application of its use across the industry.  More importantly, or so it seemed at the time given the hype of the GE-Harris combo, a significant attempt was made by several railroads to advance traffic management. Referred to as Advanced Train Control Systems (ATCS), this platform attempted to incorporate a concept for a positioning technology to ascertain which track a train was on when in parallel track operations, as well as another concept for determining the precision of position along the track required for moving block. Fortunately, the industry soon rejected the two ill-founded concepts, i.e., transponders embedded in tens of thousands of track miles, and expensive, on-board gyro platforms infused with convoluted track databases.

Shortly after the demise of ATCS, I was employed by CSX to develop a Positive Train Control (PTC) system for dark territory operation.  A major challenge was to find a solution for parallel track operation without the availability of track circuits to declare block/track occupancy. Luckily, I had the advantage of what not to do given the ATCS failure. The solution I developed, that has since been used in all PTC pursuits by freight railroads in North America, was to monitor switch position for the back office system to “route” the train within the accuracy of GPS once the initial track was known by PTC.  There were significant additional advantages to monitoring switches, i.e., being able to enforce a train should the crew be in danger of violating either the switch’s position or run-through speed.

While routing has been incorporated successfully into PTC functionality, there still remains the issues of accuracy and timeliness of positioning data for the purpose of advancing railroad operations. Specifically, what is missing is the middle ground between what the century-old technologies provide and what the technicians left unmanaged with seemingly unlimited capital funds would provide (as is currently the case).  The former can only provide block ID, and not actual position or speed of a train in signaled territory. In dark territory, not even that level of information is available.  Contrarily, the un-tethered technician will attempt to deliver real time data of both position and speed, even though it clearly isn’t necessary. Such fatuous pursuits by technicians result in expensive wireless infrastructures.

There are two key points here –

1) The advanced traffic management systems being deployed in Europe, ERTMS, are using GSM-R wireless with base stations as close as every 4Km so as to insure no more than a 7second lapse in transmitting critical information to keep the high speed trains moving.  Such an approach can increase the cost of the wireless infrastructure by a factor of 10 compared to what is required when dealing with slower freight trains.

2) A number of years ago, I contracted an Operations Research (applied mathematics) consultancy to determine the pragmatic requirement for reporting train position and speed in a fashion capable of supporting meet/pass planners.  This analysis showed the optimum frequency of reporting such data ranges from reports every 5 – 15 minutes, depending upon the level of traffic. This is not real -time data, but rather in-time data; the difference is critical when deploying wireless data infrastructure as well as the design of the back office systems that use the data. With in-time data, dispatchers can foresee traffic conflicts and dynamically re-plan train movements; a concept I refer to as Proactive Traffic Management (PTM) and introduced to the industry 6 years ago.

In addition to the use of wireless to report train position and speed, there is a variety of positioning data that are being provided for singular activities, including OS’s, AEI and wayside detection reports. Hence, there is an opportunity to merge these data into a single data base/server that can be used to service all requiring applications with improved timeliness and quality of data. Such capability would be the function of a positioning engine that is a type of Kalman filter that maintains a statistically rational tracking of trains based upon a continuously updated data base. I know of only one railroad that has built, reportedly, such a strategic component within their IT infrastructure.

Revving up a positioning engine requires a succession of steps; I can envision the following: 1. Construct a locomotive tracking platform by integrating AEI reports with recurring wireless data transmissions from the locomotives; 2. Incorporate a locomotive-to-train converter to form a train tracking platform; 3. Introduce train OS’s from CAD as well as the status of critical manual switches (e.g., dark territory operation) and layer on train routing logic. Voila! You have an IT server that is available for all purposes including the management of traffic, crew, track gangs, and locomotives, as well as PTC. This is an enterprise solution that, most interestingly, can be provided outboard and independently of the CAD – CTC infrastructure. This is a solution that can stand easily on its own merits without the organizational, technical, and functional barriers that are normally confronted when taking on changes to a railroad’s operations practices or its stoic IT infrastructure.

I am not suggesting that the above 3-step process to obtaining a positioning engine is particularly easy. But, it needs to be done now given that the PTC mandate has resulted in the railroads finally working together to develop a wireless strategy, albeit an overly complex and unnecessarily expensive one. Actually there are really two levels of positioning engines required. The first level is required by each railroad, and for a railroad not to do so affects only that particular railroad. The second level of positioning engine is for the industry.  What I refer to as industry intra-operability is a strategic platform that is required to improve the advancement of all railroads. It is the ability to know where assets are regardless of which railroad they are operating. The advantages can be significant, including fueling, maintenance, and traffic management. Industry intra-operability will addressed in a separate posting.

Lastly, positioning data is only as good as the reliability and accuracy of the reference points.  This means that the railroads require substantial GIS systems.  Fortunately, that seems to be the case for each railroad individually, but not necessarily from an industry standpoint.  Furthermore, the GIS platform within a railroad needs to be enterprise level in concert with the positioning engine. That is, the E-GIS platform needs to be common to all applications requiring such data, and the data collection and modifications requirements need to be specifically assigned to individual departments with no overlap. Simply stated, there can only be one source for any given data element … or … a version of the positioning gateway is required to blend multiple sources of the same data into one usable source. This is a critical design point for safety systems such as PTC.

Teddy Bear – “Digital Authorities are Vital”

I thought I had covered all of the important Teddy Bears in my prior posts as to the issue of vitality in railroad operations, but I forgot about one.  Several weeks ago at a PTC conference where I was the luncheon speaker, I addressed a number of topics. Arguably, the most important two points I discussed were:

  1. PTC does not deliver business benefits; and
  2. The fervent pursuit of PTC by the railroads to meet the mandate requirement is actually preventing the pursuit of opportunities to advance railroad operations. The reason for the latter is explained by the fact that most railroads lack both the Strategic Railroading perspective and the necessary resources, Technologists, to develop and deploy such a perspective.

At the conclusion of the presentation, the audience was asked if they had questions or comments. The first question was as to whether or not I thought Digital Authorities are vital. Indeed, there are many that believe them to be … with the sequential logic being that the wireless communication system required would have to be vital as well. In fact, the digital authorities are no more vital than the aspects on the signal post or the authorities that are provided via voice radio in non-signaled territory. All of these are only the display of the results of the vital process that was in effect to generate the authority.

With that said, it doesn’t mean that the transmission of authorities need not be accurate and reliable. For voice authorities, those attributes are provided by the crew member repeating the authority back to the dispatcher, and then starting over if there is any disagreement.  For DA’s, the accuracy and reliability factors are provided by a mathematical algorithm that performs error detection and correction on bits. And for signals, the issue is whether or not the light source is operable.  In all cases, should the transmission fail, then the crew knows what to do.  They revert to the threshold level of vitality referred to as the Book of Operating Rules.

The bottom line is that DA’s are not vital.
Therefore neither the transmission process nor the equipment need to be either.

Teddy Bear – “PTC is Vital”

“PTC is Vital.”

It was a slow process, but perseverance has paid off.  This Teddy Bear as to PTC being vital has only the faintest shade of presence. Most individuals that have anything to do with PTC now understand that PTC is NOT vital. But, just in case, here’s the story.

It was in the earliest meetings of the PTC- Railroad Safety Advisory Committee (RSAC) process a decade or so ago that there was a great deal of confusion and misunderstanding as to what PTC was and what it did.  Indeed, the first primary task for the RSAC members, that included FRA, rail management, labor representatives, and suppliers, was to define the “core objectives” of PTC.  Within several RSAC sessions, the core objectives were determined to be 3-fold:

i.e.,

keep trains from hitting trains, keep trains from over-speeding, and keep trains from endangering work gangs.

An additional objective of protecting against grade crossings was introduced but readily dropped due to the physics of train movements and the ownership of the property. That is, to stop a freight train in time to prevent an accident involving a grade crossing situation, e.g., failure of gate to lower, would require such a long time for the gate to be lowered that the public would be more likely to run around the gates.  Additionally, the railroads in general own the property, and it is the public’s responsibility to watch out for trains – not the other way around.

Lastly, a fourth core objective has been added with the PTC mandate, i.e. prevent a train from moving through a misaligned switch. Once initial three core objectives of PTC were established, the next challenge for RSAC was to obtain a status of PTC efforts across the industry.It was at this time that I had the first of a number of opportunities to present Communications Based Traffic Management (CBTM), the PTC effort for which I was the architect at CSX.

CBTM was the first overlay approach to be developed, and as such it established the underlying basis for the current PTC pursuits by the freight railroads to meet the mandate. It also was the first overlay PTC project that had to confront the point of vitality. My first presentation to the RSAC members stating that CBTM was not vital began a long education process to get past various perspectives of vitality that existed at that time, as follows: First, key members of the FRA believed everything was vital in the overly-zealous spirit of zero tolerance for risk. Second, Labor thought by not being vital meant that the vitalities (lives) of the crew members were not being protected, as in “Does PTC apply the brakes or not?” Lastly, traditional signaling personnel, whether railroads or suppliers, view vitality as the state of failing safely, as in track circuits, relays, and control point logic. Hence, their logic proceeds that anything associated with that infrastructure needs to be vital as well thereby requiring extensive engineering, verification & validation (V&V), and duplication of hardware.

My challenge was to describe vitality in a fashion that would be acceptable to all.  The solution was to introduce an operational / functional perspective in lieu of the regulatory, technical, or humanistic ones. Simply stated, I defined vitality as the means by which movement authorities are generated so as to maintain the integrity of train movements. Hence, with such a definition, it follows that PTC is not vital since it has nothing to do with the generation, or even transmission, of movement authorities. (BTW, it is for this reason that PTC can not improve traffic density as discussed in another Teddy Bear Posting: PTC Business Benefits.) As the result of this effort, one issue of my quarterly journal, Full Spectrum, was so dedicated and titled Vital’s Vanity. As a closing point, it is appropriate to introduce here what is so often overlooked by people when they talk about vitality.  That is, there is a threshold of vitality that exists whether the territory is signaled, non-signaled, and does or does not have PTC or other enforcement systems. I am referring to the Book of Rules.

Teddy Bear – Operating a railroad safely requires signaling

“Operating a railroad safely requires signaling.”

Major suppliers sell major signaling systems to major railroads for major bucks. But what about those small freight railroads, even those with some passenger service? Do they really require the traffic control systems that are offered to them; the ones that involve extensive investment in wayside infrastructure, communications, and back office systems?  Additionally, what about those railroads that are being planned for difficult terrain subject to extreme weather, a lack of power, theft of equipment, and a lack of trained maintenance personnel? Do they need to confront these hardships on top of extensive investment and on-going maintenance costs to provide for a safe railroad?

While signaling does provide for safe operations, that is not its purpose.  Signaling is used to provide capacity. It is possible to operate a railroad very safely without signaling, as well evidenced in North America. Specifically, nearly half of the freight trackage in N.A. operates as non-signaled territory (albeit only 20% of the traffic) meaning that there are no track circuits, no wayside or cab signals, and no code lines as required in Centralized Traffic Control (CTC) systems. The only technology requirement is that of some form of wireless communications that can be either commercial (satellite, cellular) or private network sufficient to provide for voice communications.  That’s it for the infrastructure.

As to the vitality (i.e., the integrity of train movement), as noted in the post “There’s nothing vital in dark territory.”, the computerized conflict checking process is the simplest of a traffic control process that doesn’t permit two trains to be in the same portion of track at the same time. In a way, this is not unlike the most ancient traffic control system based upon track occupancy referred to as token block. The key difference is that dark territory is programmed whereas token block’ vitality can be readily compromised by lack of discipline with the manual efforts required; indeed this is the case in some countries where it is still in use.

The only issue with dark territory is the time required for the iterative, manual process of the dispatcher transmitting the movement authorities to the train crew followed by the rolling-up of the authorities once the train crew has reported the train’s progress.  With such a simple process, a decent size freight or passenger railroad can operate safely. Additionally, there are even ways to tweak dark territory operation to improve capacity even further, e.g., digital transmission of authorities, automatic roll-ups, embedded signals (without CTC), and the ability to throw switches from the locomotive.  Lastly, with the combination of dark territory and Positive Train Crew (PTC), the railroad is assured of a safe operation both as to dispatcher errors and train crew errors respectively.

Also, Dark territory is really, really inexpensive. However, don’t expect those major suppliers or consultants to share its existence with small to medium railroads. First of all, those supplier don’t have a dark territory deliverable or mindset, and second, there is nothing for them to sell as to infrastructure and complex back office systems.

The team of railroad professionals at Maendeleo Rail is well experienced with dark territory operations as well as PTC. We can readily address the alternatives as to processes and wireless technologies, as well as determine the level of throughput that can be delivered for freight, passenger, or mixed traffic. Since we’re independent of any suppliers, and instead look to partner with railroad operators, we provide low cost, highly efficient solutions.

The Mobile Node – A Missing Isssue in the Positive Train Control Debate

The Illusive Mobile Node

Is it politics or perspective that is causing the PTC debate to derail?

As discussed  in the Last Mile posting,  US railroads are still failing to take on the strategy of incorporating the advanced business applications that can be achieved with the wireless data path required to support Positive Train Control (PTC) so as to most effectively manage their resources.

Specifically, the voice radio and signaling infrastructures that are currently depended upon to provide train status data to the traffic control systems, are unable to deliver the timeliness and completeness as to both location and speed data for trains so as to permit the use of meet /pass planners that could optimize the railroads’ most dense and most critical operations.  Therefore, this primal infrastructure needs to be advanced, and to do so effectively requires a perspective that integrates the three principle technology platforms (communications, positioning, and intelligence) to form a strategic core technology infrastructure. In this post, I address intelligence, i.e., the processing power for applications, of such an infrastructure. The other two platforms will be addressed in following postings.

With the shift from the mainframe of the 60’s to that of client / server of today, intelligence has made the transition from being only centralized to that of being distributed with seamless flexibility between the two, at least for those industries whose distributed resources are fixed as to location. For these fixed node operations, the challenges for distributing intelligence tend to be less technical and more functional as how to optimally allocate the processing power across a mesh of private and commercial networks, internet, and back office systems.  But, what about railroads where the assets are mobile and, even worse, where those assets traverse across railroad boundaries? This convoluted concoction of mobility and interoperability adds new dimensions to distributed intelligence far beyond those of fixed node, thereby necessitating a mobile node perspective with philosophical, technical, and functional considerations garnished with industry politics.

From a philosophical standpoint, the mobile node should be viewed as an extension to the IT architecture, meaning that the discipline and expertise well established in the traditional wired-IT environment should be imposed upon mastering the wild west of wireless. In short, this means that railroads and suppliers alike need to coalesce wireless and IT expertise into a dedicated Mobile Computing organization in lieu of the parallel lines on an organization chart that are too often the case today.

As to a functional perspective, the deployment of mobile nodes offers the extraordinary opportunity to rethink business processes that can take advantage of unprecedented connectivity and the timeliness and accuracy of position and speed data that wireless data afford (think UPS or Fed Ex).  For some this may be extraordinarily uncomfortable when they are confronted with revisiting the functionality of their traditional back office systems, e.g., how would train dispatching be done with train speed and location data available every 5 minutes?

Unlike the fixed node, the mobile node is technically challenged by both the constraints of the communication medium and the physical environment in which it operates as well as the requirements of interoperability. As to communications, the mobile node must be able to strut its independence given that the wireless throughput is relatively limited and unreliable compared to a fixed node’s wired throughput. As to the physical environment, what could be worse than the cab of a locomotive or a maintenance-of-way vehicle? For this challenge I subscribe to the screwdriver-penetration test, a railroad’s version of Psycho’s shower scene applied to on-board equipment.

Given the extensive interchange of trains between railroads in North America and the EU, there is often the issue of  interoperability, i.e., the ability of foreign equipment to provide the desired functionality on a railroad’s property. There are only a few applications that have been recognized for this intra-industry pursuit. Unquestionably, the most important for this discussion is that of Positive Train Control (PTC) which has been mandated by the US Federal government for implementation across the major freight and passenger railroads before 2016.  With an unprecedented level of cooperation, it would seem to many, that the primary 4 Class I railroads in the U.S, via a joint effort referred to as the Interoperability Train Control (ITC) agreement, are working on all aspects of interoperability to meet the deadline.  The ITC efforts are being handled by 7 technical committees:  Architecture, PTC Application, Wayside Signal, Messaging, On-board Platform, Communications Steering, and Data Management.  The standards that come out of these committees are to be available by January 2011.

However, there are still 2 major points to consider. The first is that the effort does not have any purpose other than that of PTC. While many railroaders and suppliers will state the business benefits of PTC, they fail to recognize the foolishness of their own hype. Simply stated, it is the wireless path now required for the mandate PTC effort that will finally deliver business benefits not PTC itself; PTC is just one user of the wireless data infrastructure.  BUT, the ITC efforts are not providing a business perspective of the on-board platform that would deliver a true mobile node perspective that could handle not only PTC, but also  support business-value applications such as pacing, locomotive tracking, fuel consumption, in-train monitoring, etc.

There is also another reason that the ITC efforts are less than complete, certainly not altruistic, if not a bit misleading; it is the issue of industry politics. That is, each major railroad came to the ITC table with a very different technology agenda. There are solutions to address these differences, and the railroads more than ever are working in that direction. However, I believe the solution to develop a single technology platform is poorly evaluated as to both scope and costs, while other wireless spectrums are being very poorly utilized, i.e., Meteorcomm and narrowband 160-161 MHz … clearly a discussion for a forthcoming post.

As discussed in the Last Mile posting, the railroads are still failing to take on the strategy of incorporating the advanced business applications that can be achieved with the wireless data path required to support Positive Train Control (PTC) so as to most effectively manage their resources. Specifically, the voice radio and signaling infrastructures that are currently depended upon to provide train status data to the traffic control systems, are unable to deliver the timeliness and completeness as to both location and speed data for trains so as to permit the use of meet /pass planners that could optimize the railroads’ most dense and most critical operations. Therefore, this primal infrastructure needs to be advanced, and to do so effectively requires a perspective that integrates the three principle technology platforms (communications, positioning, and intelligence) to form a strategic core technology infrastructure. In this posting, I address intelligence, i.e., the processing power for applications, of such an infrastructure. The other two platforms will be addressed in following postings.

With the shift from the mainframe of the 60’s to that of client / server of today, intelligence has made the transition from being only centralized to that of being distributed with seamless flexibility between the two, at least for those industries whose distributed resources are fixed as to location. For these fixed node operations, the challenges for distributing intelligence tend to be less technical and more functional as how to optimally allocate the processing power across a mesh of private and commercial networks, internet, and back office systems. But, what about railroads where the assets are mobile and, even worse, where those assets traverse across railroad boundaries? This convoluted concoction of mobility and interoperability adds new dimensions to distributed intelligence far beyond those of fixed node, thereby necessitating a mobile node perspective with philosophical, technical, and functional considerations garnished with industry politics.

From a philosophical standpoint, the mobile node should be viewed as an extension to the IT architecture, meaning that the discipline and expertise well established in the traditional wired-IT environment should be imposed upon mastering the wild west of wireless. In short, this means that railroads and suppliers alike need to coalesce wireless and IT expertise into a dedicated Mobile Computing organization in lieu of the parallel lines on an organization chart that are too often the case today.

As to a functional perspective, the deployment of mobile nodes offers the extraordinary opportunity to rethink business processes that can take advantage of unprecedented connectivity and the timeliness and accuracy of position and speed data that wireless data afford (think UPS or Fed Ex). For some this may be extraordinarily uncomfortable when they are confronted with revisiting the functionality of their traditional back office systems, e.g., how would train dispatching be done with train speed and location data available every 5 minutes?

Unlike the fixed node, the mobile node is technically challenged by both the constraints of the communication medium and the physical environment in which it operates as well as the requirements of interoperability. As to communications, the mobile node must be able to strut its independence given that the wireless throughput is relatively limited and unreliable compared to a fixed node’s wired throughput. As to the physical environment, what could be worst than the cab of a locomotive or a maintenance-of-way vehicle? For this challenge I subscribe to the screwdriver-penetration test, a railroad’s version of Psycho’s shower scene relative to on-board equipment.

Given the extensive interchange of trains between railroads, there is often the issue of interoperability, i.e., the ability of foreign equipment to provide the desired functionality on a railroad’s property. There have been only a few applications that have been recognized for this intra-industry pursuit. Unquestionably, the most important for this discussion is that of Positive Train Control (PTC) which has been mandated by the Federal government for implementation across the major freight and passenger railroads before 2016. With an unprecedented level of cooperation, it would seem to many, that the primary 4 Class I railroads in the U.S, via a joint effort referred to as the Interoperability Train Control (ITC) agreement, are working on all aspects of interoperability to meet the deadline. The ITC efforts are being handled by 7 technical committees: Architecture, PTC Application, Wayside Signal, Messaging, On-board Platform, Communications Steering, and Data Management. The standards that come out of these committees are to be available by January, 2011.

Given the ITC efforts, there are still 2 major points to consider. The first primary point is that the effort does not have any purpose other than that of PTC. While many railroaders and suppliers will state the business benefits of PTC, they fail to recognize the foolishness of their own hype. Simply stated, it is the wireless path now required for the mandate PTC effort that will finally deliver business benefits; PTC is just one user of the wireless data infrastructure. BUT, the ITC efforts are not providing a business perspective of the on-board platform that would in effect deliver a true mobile node perspective that could handle not only PTC, but also support business-value applications such as pacing, locomotive tracking, fuel consumption, in-train monitoring, etc.

There is also another reason that the ITC efforts are less than complete, certainly not altruistic, if not a bit misleading; it is the issue of industry politics. That is, each major railroad came to the ITC table with a very different technology agenda. There are solutions to address these differences, and the railroads more than ever are working in that direction. However, I believe the solution to develop a single technology platform is poorly evaluated as to both scope and costs, while other wireless spectrums are being very poorly utilized, i.e., Meteorcomm and narrowband 160-161 MHz … clearly a discussion for a forthcoming posting.

The Last Mile – the 80/20 productivity gain the railroads are missing

As of two years ago, the advancement in railroad operations had stalled at the end of the wire, literally. While railroads have invested heavily in the backbone communication and signaling infrastructures that define the perimeter of their IT and traffic control architectures, the primary assets that need to be managed (trains, crews, locomotives, maintenance crews) operate beyond the reach of those tentacles.

Unfortunately, railroads continue to rely on track circuits and voice radio for managing trains and thereby the locomotives, train crews, and yard utilization. Accordingly, the back-office dispatching systems are so geared to provide a level of traffic management that can no longer service the railroads’ markets during peak periods. The net effect of such inefficiency is two-fold: 1. railroads have turned away (or lost) business during peak market periods, and 2. railroads are paying a severe price to obtain and maintain excessive resources, e.g., locomotives and crews.

Suddenly and unexpectedly in 2008, the Congressional mandate for Positive Train Control (PTC) in the Rail Safety Improvement Act of 2008 delivered the requirement for the railroads to advance wireless data networks, both individually and as an industry.

Suddenly, there was some hope by the few progressives in the industry that the PTC mandate would lead to a broad understanding of what the required wireless data infrastructure could do for rail operations.

Shortly thereafter, but not surprisingly, all such hopes were dashed as the railroad technicians sunk their teeth into this new opportunity to provide a new, most advanced, extremely tailored wireless data platform that could be envied by all and do all …but without any desire, recognition, or management directive to consider other than PTC.

Shamefully, this wasn’t the first mandate from the Feds that could have led to a revitalization of a railroad’s operations via wireless. The FCC had issued a Point & Order referred to as Narrowbanding that effectively requires the railroads to replace their extensive 160-161 MHz infrastructure consisting of 250,000 analog devices with digital equivalents by January 1, 2013. However, this requirement has been viewed  by the railroad technicians as a technology investment issue and not as an opportunity to advance operations.

Amazingly, after two extraordinary opportunities to advance railroad operations with an advanced wireless platform that required no justification other than a Federal mandate, there is still no real focus on the Last Mile as to optimizing the capacity and productivity.

The phrase Last Mile is not a new one for some industries where it has been  used to describe alternatives to deliver cable services in the 1990’s as well as to providing communication infrastructures in developing countries, and most recently to define new markets for advancing mobile services.  The phrase is also used to define the delivery of goods that is beyond the railroads’ physical infrastructure and that is provided by trucking firms. In this latter case, the intermodal industry has emerged as a seemingly seamless transportation offering the combination of rail, trucking, and maritime. Taking that approach to the last mile relative to a railroad managing its own resources is directly comparable, i.e., developing and merging the necessary technologies into a seamless technology platform that I refer to as the core technology infrastructure.

Simply described, the core technology infrastructure is the integration of communication, positioning, and intelligence technologies that supports the basis of a railroad’s operations. Today, that infrastructure is a ménage of voice radio and backbone networks as to communications, track circuits for positioning, and control points enslaved by CTC systems for intelligence. This infrastructure provides a level of block positioning data, but without train speed, that constrains the effectiveness of managing traffic to that of being reactive to conflicts in the meeting and passing of trains. With improved timeliness and accuracy in both train position and speed information, the railroads can achieve an advanced operating practice of  Proactive Traffic Management (PTM) that I introduced to the industry in 2005.

PTM is the ability to see the future state of a railroad’s operations so as to provide solutions to minimize, if not avoid, foreseen traffic conflicts. It does so by projecting the current status of trains by feeding both timely and accurate train position and speed data to sophisticated meet / pass planners aligned with a railroad’s operating objectives. For traffic management, the frequency of such data is dependent upon traffic density and the type of traffic control.  To be brief here, that means the reporting frequency of position and speed data ranging from 5 to 15 minutes in addition to AEI and CTC’s on-station (OS) reports. This is what I refer to as in-time data.

To obtain in-time data requires a strategic perspective of the core technology infrastructure, a perspective that needs to be both evolutionary and revolutionary. As to the former, the railroads should be able to leverage their current, massive communications infrastructure to obtain the level of in-time data required. The most obvious opportunity here is the conversion of the  current analog, voice-based VHF infrastructure to a digital, data-based one … justified by the rational understanding that by doing so the railroads could avoid the $1 billion investment in the 220 MHz platform for PTC. As to a revolutionary perspective, obtaining PTM will mean making significant changes in the traffic control processes that stem from the 1st qtr of the last century. Such changes are supported by integrating advanced communication, positioning, and intelligence technologies that have yet to successfully storm the innovation barricades of both the railroads’ and traditional suppliers’ engineering departments. A critical design point in developing a strategic core technology infrastructure is to not fall for the fallacy of  zero tolerance – 100% efficiency,  to not drive towards unrealistic, if even achievable, goals such as moving block dependent upon real-time data.

To do the Last Mile requires a strategic technology plan in sync with a strategic operations plan. It requires Strategic Railroading.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop