Teddy Bear – CAD delivers Traffic Management

For those new to this blog, I should first explain that Teddy Bear postings address beliefs or statements that railroaders like to state as the truth, but in fact are misleading, if not totally false. Such beliefs and statements are unfortunate rationale for those individuals that strive to be comfortable with what they understand of their railroad operations without either the understanding and/or motivation to adjust their concepts of railroading based upon advancing technologies. Keep in mind that it was the 1st and 2nd quarter of the last century during which the two key technologies that the railroads depend upon today were introduced, i.e., track circuits and voice radio, respectively.


In this light, this posting strikes at the core of operations in that it takes on the hype that the freight railroads are doing the best that can be done with their primary operations platform, i.e., Computer Assisted Dispatching (CAD).

CAD came into play decades ago as railroads implemented Centralized Train Control (CTC) systems to consolidate block operators into centralized dispatching operations for both the efficiency of train movements as well as eliminating the multitudes of block operators with their individual track segment kingdoms. Clearly, CAD platforms have serviced the railroads well, but not as well as they can now given the recent advancement in technologies, most importantly wireless data and computer-based intelligence that can handle a substantially greater number of operational complexities than the best, most experienced dispatcher.

I start my argument with the fact that CAD is NOT a PLANNING platform in any true sense, i.e. CAD is NOT a traffic management platform. That is, CAD provides a view of where the railroad was at some point in time, but not where it is currently (e.g., CAD does not know if a train has stopped or is still moving) … or more importantly, where it will or can be. Rather CAD is a traffic control platform, an EXECUTION platform, that presents to the dispatcher the status of the railroad as to block-occupancy with the dispatcher left to make his/her too often crisis-based evaluation as how to throw switches to route trains. That is, the dispatcher uses his/her convenient, traditional processes, based upon the status of block occupancy, to decide how to request the routing of trains via the vital wayside infrastructure. CAD then executes those requests based upon the vital process of the wayside control points in permitting or not permitting the switches to be thrown subject to the condition of the appropriate track circuits (a train detection technology). The underlying point is that the dispatcher cannot throw a switch to route trains (usually), if the track circuit indicates that another train is already in the desired blocks. Simply stated, CAD does not do any analysis of what is the best way to meet the operating objectives of the railroad. Granted, there is a simplistic Autorouting process that is used primarily by Western U.S. railroads in selected, straight-shot corridors to set up the switches for high priority trains, e.g., intermodal traffic. But, such a mindless process does not consider critical variables including the status of crews, the availability of yard receiving tracks, and the need of locomotives to be available for other trains.

Autorouting is robotics, not planning.

So! If CAD is not a planning platform, then what is? … and how can it be provided?

These are two great questions that several Class I’s so very recently have addressed, although only to a limited extent in my opinion, as follows –

A TRUE planning platform is one which balances a number of objectives as to the most cost-effective movement of trains based upon a mixture of variables, including the status of yard receiving tracks, crew status as to outlawing and minimal crew deployment cost factors, track maintenance, fueling requirements, locomotive management, as well as being able to react to unpredictable circumstances, e.g., derailments, main line switching, etc.  If that seems to be very complex, then you understand why it can’t be expected that dispatchers take these issues into the routing of trains. In fact, they don’t. Rather, dispatchers work to get the trains across the railroad based upon some simplistic objective without consideration of the above points that can directly affect the railroad’s bottom line as well as the welfare of the employees. That is why mathematical planners, using clear objectives, are necessary especially in the majority of operations that are truly not scheduled. This is even more critical now given the increased push for comingling high (rather, higher) speed passenger trains with freight.  If indeed railroads were truly scheduled by the railroad’s Service Design department, and if those schedules were truly held to by Operations, then the objective function would be relatively simple, i.e., minimize the cost of getting back to schedule.  But, truly working to a schedule takes a leap of faith that traditional railroaders simply can’t accept.

Hmmmm! Surely, with the consolidation of passenger airlines, there must be some of those folks that understand and function by scheduled operations that would be willing to work in the rail industry.   😀

As to providing planning platforms, railroads can expect to be approached by suppliers to replace their CAD platforms with movement planners integrated into their operation, e.g., with CAD displays that permit the dispatcher to perform forthcoming conflict analysis based upon how trains are progressing as to their movement authorities, whether it be signaled or non-signaled operations. However, providing planning platforms can be done without swapping out a railroad’s CAD platform. That is, a planning platform can be implemented that is outboard and independent of CAD. This is really straight-forward stuff that seems to be just too convenient to ignore by traditional traffic control suppliers. Additionally, I need to point out that it can be done NOW, with or without consideration of PTC implementation.

So! What can my team of railroad operations, planning, and technology professionals do for your railroad?  Perhaps we can expose the key issues, backed by objective analyses and technical insight, as to what your railroad can do so as to balance what you are being told by internal resources and suppliers that have not advanced their railroad process thinking in sync with the advancement in technologies. Simply stated, suppliers don’t understand, yet alone are pursuing Strategic Railroading.  Keep in mind that my team neither represents nor accepts commissions from suppliers.  We work in a railroad’s best financial, operations, and safety interests.

Dark Territory’s Dynamic Duo

In the previous posting to this blog, In the Light of Dark, I introduced the concept of non-signaled operations used in the Americas that is most frequently referred to as Dark Territory (DT). In fact, there are two basic types of DT, i.e., Dark/Dark and Dark/Lighted (my terminology and not Googable).  In Dark/Dark operations, neither the dispatcher is presented with any indication of where the train is (as in signaled CTC operations), nor is the train crew provided with any in-cab or wayside signals to present the crews with the indication of the time & speed parameters of the current movement authority (a.k.a. aspects). Instead, the crew obtains the movement authority via voice radio or as data via data radio (a.k.a. digital authorities) from the dispatcher. That is, both the dispatcher and the train crew are in the dark, so to speak, as to the train position and authority, respectively.  Contrarily, in Dark/Lighted operation, the dispatcher is still unable to see the position of the train, but signals are used within the corridor to keep trains separated by block.  This use of Absolute Block System (ABS) increases the possible capacity of the DT operation by adding a second level of vitality (i.e., the generation of movement authorities) to the primary authority so as to place multiple trains into a sequential set of blocks instead of having one train hold all blocks exclusively until it releases the whole set of blocks. Although a signal engineer will declare ABS to be signaled operations, it is actually  DT in that the primary authority to get the train into the corridor was so generated. Regardless of the type of DT, two critical points remain true: 1. the dispatcher doesn’t know where the train(s) is in the DT corridor, and 2. the dispatcher doesn’t know the speed of the train(s).  But, that’s OK, seemingly, because DT is used for low to medium density operations … or is it really OK?  Actually, it is no longer OK.

Traditional railroaders have accepted that DT has limited capacity due to the manual efforts of transmitting authorities and subsequently releasing them. But, what if a railroad was to obtain the actual position and speed of trains, and then use mathematical movement planners to adjust the generation of movement authorities in a more dynamic fashion?  That is, what if a dispatcher had a Planning Platform, either integrated or independent of CAD, that could more efficiently plan the generation of authorities, and then have the dispatcher use CAD as the execution platform that it truly only is? That is, what if the dispatcher had what I have introduced 5 years ago as Proactive Traffic Management (PTM) instead of the reactive, crisis-based management of train movements (more on this in a future posting)?

Now, the question is: How much capacity can be obtained with DT operations that use the dynamic duo of digital authorities and PTM, whether dark/dark or dark/lighted?  Of course, the answer varies for each individual corridor. But no railroad, to my knowledge, has attempted to answer that question. They don’t know what they don’t know. Instead, they take the traditional signaling approach that requires heavy investment in infrastructure as well as extensive maintenance costs to ensure the reliability of the equipment. Additionally, such signaling operations in developing countries are subject to theft and deterioration due to poor maintenance given a lack of adequately train maintenance personnel.

The great news is that such capacity evaluations can be performed through the use of mathematical models not unlike those that are used to calculate the theoretical throughput of signaled operations. But again, to my knowledge, no one is using such models.  Clearly, neither suppliers nor traditional consultants that advise railroads are doing such analyses in that they will not sell anything  since 1. there is no infrastructure investment for DT other than wireless data, and 2. they don’t have operational experience with such operations, respectively. That’s where my associates and I can be brought into play.

As my team of professional railroaders and planners are pursuing with small and emerging operations in selected areas of the globe, there is the opportunity to bring those types of alternatives to railway management.  The icing on the cake is that we also can advise on the use of enforcement systems, such as PTC, so as to provide for as safe of a railroad operation that is possible with both reliable traffic control and efficient traffic management, as well as assure that a train crew will not violate their authorities. It doesn’t get any better than that.

If what I have discussed above applies to your railway, then we need to talk. By the way, my team doesn’t represent any suppliers, nor do we accept commissions from suppliers. We work for your railway’s best financial and operational interests.

In the Light of Dark

Rail professionals, whether from the railroads or the suppliers, associated with North American freight rail or European/Asian high speed passenger live and breathe some form of fixed block, signaled operation, either wayside or in-cab, as the means to provide crews with reliable movement authorities to advance trains. However, of that group only a relatively small percentage is operationally-familiar with the well-established, non-signaled operation (a.k.a. Dark Territory [DT]) that is used across 50% of U.S. rail trackage (albeit handling only 20% of the traffic).

What causes this lack of awareness?  Essentially, traditional traffic control suppliers have nothing to sell in DT  – there is no infrastructure required other than wireless – hence no business interest. Additionally, the heretofore, manual-only processes of DT have made it incapable of handling the requirements of high speed and/or high density operations, whether freight or passenger.  I say heretofore in that the digital age has now come to DT.

Dark Territory - the perfect traffic management solution for small railroads. No more expensive capex and operating costs to maintain wayside signals.

Wayside Signalling - An unnecessary cost

The availability of a wireless data network (with or without PTC) permits the time consuming, and possibly compromised, voice transmissions of the movement authorities between the crews and the dispatcher in DT operations to be handled as data presented via an on-board display. Additionally, that same wireless data path can be used to release authorities in the back office DT platform logic, a.k.a., conflict checker.  This double time-reduction whammy provides for a quantum increase in the capacity that a dispatcher can handle in DT operations.

But, outside of the Americas, the capability of DT, with or without the quantum improvement, is one of best kept secrets that, if known, could have a phenomenal effect on small and emerging railroads; railroads that are critical to the business and social welfare of their respective countries.  Again, I am not talking about the sophisticated railways of Europe, but the railways that are being considered across Africa, the Middle East, India, Indonesia, and elsewhere. These railroads could see a massive increase in capacity for minimal investment in a green-field operation to a net-savings for a railroad operating on an older signaling system (removing the older system would save future operating and maintenance costs, often resulting in a net savings). In addition, a traffic control system without wayside infrastructure results in less expensive equipment to be stolen or damaged by harsh environs reducing operating costs and increasing safety.

The railroads across the globe that could benefit from DT come in two types. First, there are railroads that are emerging either as green-field developments or as rebuilds of railways that have been reduced to rumble or abandoned for civil and/or economic reasons. Second, there are those railroads that are fully functional but are dependent upon the most antiquated traffic control system generically known as Token Block (TB). With its development stemming from the middle of the 19th century in Britain, TB can be found in patches across the globe. TB is safe in concept. That is, to operate within a particular segment of track , a crew must possess a token, physical /electronic that is uniquely assigned to that segment. However, as I witnessed in my assignment in Egypt regarding the Egyptian National Railways (ENR) to evaluate safe railroading, including both traffic control and enforcement, the manual processes involved in TB ( 85% of ENR’s trackage) permit the vitality of operation to be greatly compromised. When those processes are violated; major accidents have occurred.

So! Here’s the problem. While DT is an excellent traffic control approach for small and emerging railroads, these operators are not being informed of its availability. Instead, major suppliers are selling (and traditional consultants are promoting) the major systems that have been deployed across major rail operations as the only solutions. Such solutions put these railroads at considerable financial risk , not only due to the initial investment required, but also as to the on-going profitability due to a combination of extensive maintenance and training costs, a likely lack of disciplined and educated maintenance personnel, and the susceptibility to theft of wayside infrastructure.

Hopefully, the safety project I mentioned in Egypt, as well as the marketing efforts of myself and my colleagues (we don’t represent suppliers nor accept commissions) will help spread the knowledge of Dark Territory and bring it into the light of those nationalized and private railroads that can truly benefit from its deployment.

High … or Higher … Speed Passenger Rail

The U.S. freight railroads are caught up in their own hype at this point.  They like to state how scheduled they are, when in fact they aren’t. Now, with the threat … err opportunity . . .  to integrate high speed passenger rail into those fine schedules so as to receive a bunch of Federal funds, they may have to fess up as to the true lack of scheduling. Well, maybe not. Perhaps the Feds will buy into the idea that if the railroads add more infrastructure, arguably sidings being the most popular, the freight railroads will be able to squeeze in those high speed passenger trains between the freight slugs. Really? Not a chance.  There may be an opportunity for Higher speed passenger rail, but clearly not High Speed Rail as enjoyed across a good portion of the globe outside of North America. The basic truth is that the only way to achieve High speed passenger rail is with so-dedicated track, save the 1-5 A.M window.

What is being missed by the Feds and several of the Class I’s is what can be done by investing in positioning technologies and mathematical tools, in lieu of additional trackage, to improve the effective capacity of the railroads’ current infrastructure instead of just the raw capacity. What is missing by several of Class I’s is how to complement (not replace) their current dispatching platforms (a.k.a. CAD) with execution platforms infused with mathematical planners fed by both timely train position and speed data via simplistic wireless data systems, whether commercial or private. (And don’t forget those OS reports). These are the type of data that are being fatuously promoted as a subsequent capability of PTC, when in fact it has nothing to do with PTC. It can be done NOW with or without PTC. This is really simple stuff, but railroad technicians are not expected, capable, or interested in focusing on the functionality and the business case of advancing technologies. Rather, their interest, their responsibility, is to deliver the ultimate systems whether they are required or not in the name of PTC interoperability. So be it!

I think the following quote of a quote in a recent on-line posting by John Boyd of the Journal of Commerce regarding the criteria for Federal funds being provided to freight railroads to incorporate high speed rail, is quite revealing.

Szabo (FRA Administrator) now says the agreements must include quantifiable service outcomes based onmutually agreed upon analysis / modeling that includes trip times, train frequencies and schedule reliability to the extent it is under a party’s control.

There are a number of key points being promoted in this quote, but arguably the most important is that of the last 4 words, i.e., “ under a party’s control.” Simply stated, the Class I’s don’t have control over a significant part of their “schedules”. But what they won’t admit to themselves, it seems, is that the need to dynamically schedule the lineup continuously is their own fault as to mutually-abusive railroad interchange, as well as specific customers, e.g., mines, that determine when the trains will run. The railroads don’t seem to understand that their lack of credible customer service is at fault here; the shippers are simply protecting themselves.

For more in-depth understanding of the above, you may want to consider obtaining the next issue of my quarterly publication, Full Spectrum, Volume 55, titled Buerre Manié which addresses the above in further detail along with other things you may want to consider.

Please contact me via the contact form or directly at ron@strategicrailroading.com, if you wish to discuss further.

___________

Teddy Bear – Train Dispatching is too difficult for that math stuff

Railroads & Math

I can’t quote exactly, but a railroad executive’s statement several years ago went something like:

“ Yeah, those math guys keep pushing those computerized traffic management tools, but they just don’t realize that mainline operations are just too complex with too many exceptions to make them useful.”

Wow!  What a jaw dropper. I was actually on pause for a moment as how to respond as several thoughts flashed through my mind starting with:

“So, I guess that high school algebra stuff wasn’t good for you.”

… to …

“ If it’s that complex, then how in the world is a dispatcher able to make the appropriate traffic management decisions?”

… to …

“Well if you ran your railroad in anywhere near a scheduled manner, there wouldn’t be the steady onslaught of crises.”

Fortunately, my IBM sales training some 30  years prior kicked in, and I took the CSI Miami’s Lt. Caine’s stance of tilting my head while removing (symbolically) my sunglasses, and  I responded with the fail safe :

“Why do you say that?”

All that I heard for the next 10 minutes or so were examples of train movement crises that had been handled “satisfactorily” by experienced dispatchers.

Again, a series of comments went through my mind during the executive’s tyrant starting with: “How do you know they were satisfactory solutions?” … to … ‘Did the dispatcher consider options as to alternate routings given yard or crew constraints?” … to … “So, what did the dispatchers learn as to how to prevent similar situations in the future?. Again, the IBM-conditioned response:

“Really?  How interesting?”

I had to get out of there; my sales training only took me to level 2, and this executive was pushing all the boundaries of cognitive rationalization.

Looking back, I can now understand where I was being too critical in evaluating this executive’s perspective of the railroad’s operations.  Simply stated: He didn’t understand what he didn’t understand.  He had been raised on traditional railroading based upon technologies that have changed little since their introduction in the early parts of the last century, i.e., track circuits and wireless voice. And, unfortunately the subsequent introduction of CAD platforms were limited to provide basic block status, from which dispatchers have been forced  to make decisions on untimely and overly-gross data. By default, this sophistic process had become the state-of-the-art traffic management methodology.

A study of dispatcher operations performed in Sweden several years back revealed (as in “a firm grip of the obvious) that dispatchers attempt to find workable solutions instead of ideal solutions. That means, in part, that dispatchers restrict their decision making process as to handling a very, very few variables to get out of a mess.  That is, they have learned through their experience to consider only a very few variables that provide the quickest solutions, but not necessarily the most cost-effective ones from the railroad’s standpoint; dispatchers are the heroes that master the inadequacies of antiquated practices based upon antiquated technologies.

In the last several years, two U.S. Class I’s have taken a more or less aggressive position that things have to change.  I say more or less, because one railroad bought into the concept of Proactive Traffic Management just way too much  They brought in a supplier who is so idealistic as to the movement of high speed passenger trains without the pragmatic, 80/20 perspective of what can be done with freight trains. In short, they blew it. Perhaps they are coming around, I don’t know. Reportedly, the other Class I has taken a more realistic perspective of what can be done with in-time data as to train status as to position and speed, if not just OS reports. I’m not going to give away all of the secrets here since I am a consultant that strives to make a living on dealing with the 80/20. But, permit me to just say that there are really important variables, that are much more critical than those considered by dispatchers traditionally, that can lead too much better analysis as to handling the dynamics of freight movements.

There is a next step, I can assure you, as how to merge higher-speed passenger trains into freight operation.  That’s a major perspective that sets up the importance of future posts on Strategic Railroading.

Okay, so let’s test your algebra. Consider the following problem.

Train A leaves Chicago at 11:00 A.M heading East at 30 mph (instantaneous acceleration assumed) on Track 1. At  9:00 AM  Train B leaves Cleveland heading West at 25 mph.on Track 2 (again, instantaneous acceleration).  These are parallel tracks with the distance between Cleveland and Chicago being 350 miles.  The question is where will the trains pass each other, assuming no hours-of-limits for the crews … or fuel limitations …or locomotive breakdowns … or wayside detector problems … or  other disruption issues?

ANSWER:  The trains meet at 200 miles West of Cleveland (150 miles East of Chicago) at 5:00 PM Eastern (clue).   For the equations contact me at  ron@strategicrailroading.com.

Lastly, now take this discussion to the next level of dealing with interchange between railroads, and quickly one realizes that dispatching is one freaking mess. That is unless we use timely train status, both position and speed, regardless of the interconnecting railroad over which it is operating, fed into mathematical planners.  While several railroads are beginning to realize this on their individual basis, there is clearly no industry perspective as addressed in the previous posting to this blog: Operability’s Dimensions.

Operability’s Dimensions

Capitalizing on RR Industry Intra-Operability

Any Class I railroad’s Chief Engineer can quickly and dispassionately list the challenges of handling an “unequipped train” when new technologies, equipment, and systems are being deployed across the property. This perspective of railroad intra-operability is an inherent aspect of maintaining the physical plant and functionality of a railroad as technologies evolve. For example, the migration to narrow-band VHF will involve the eventual replacement of nearly ¼ million radios nationwide without interfering with operations. Now, with the enactment of the Rail Safety Improvement Act of 2008, an additional level of operability that has been long discussed and studied, but effectively unresolved, has come to the forefront of the technicians’ tasks. I refer to railroad inter-operability as the ability of trains with foreign power to cross onto and perform PTC effectively.

With the pursuit of railroad inter-operability consuming unprecedented levels of resources and cooperation across the industry to meet the end-of-2015 deadline, a different perspective of operability is not even being considered, yet alone pursued. This is the concept of industry intra-operability that provides the ability to track resources without regard to the property over which they are operating. Unlike railroad inter-operability, industry intra-operability offers substantial business benefits that are either being handled poorly today or are not even available to the railroads, both individually and collectively as an industry.

The business benefits fall into three categories, i.e., resource management, equipment maintenance, and security, as follows –

Increased resource management effectiveness is potentially available via industry intra-operability including moving from the current crisis-based management processes prevalent today to that of being proactive.  This means having timely data on train position and speed and approaching a railroad’s network in sync with the tools to project conflicts in a railroad’s lineup whether truly scheduled or not. Such projections will permit the various resource managers to minimize, if not avoid altogether, the effect of projected conflicts including track-time, yards, train crews, locomotives, and critical rolling stock.

Industry intra-operability offers unique advantages as well in the maintenance of locomotives including knowing the status of a foreign locomotive and the opportunity for performance-based maintenance in lieu of prescriptive mandates. An accurate and complete history of diagnostic data could also result in a different concept of competitive nationwide maintenance and warranty services contracted on a railroad if not an industry basis.

Given the increasing expectations and requirements for security of shipments for both commercial and safety purposes, industry intra-operability provides a reliable and commanding level of data for both a shipment’s status and its chain of custody, including TIH shipments. As noted in the Teddy Bear posting PTC Delivers Business Benefits, these business benefits as well as a range of other business benefits that are mistakenly associated with PTC, can be achieved relatively easily with a strategic railroading perspective leveraging the three core technologies discussed in the three prior postings – if the appropriate human resources are provided.

As noted earlier, the railroads are applying substantial technical resources to obtain railroad inter-operability. Fortunately, these technicians are not the same resources required to pursue the business benefits. Unfortunately, the appropriate human resources actually don’t exist in the railroads today, i.e., technologists that can deliver a unique blend of multiple disciplines including wireless & IT technologies, business case development, business process analysis, operations research, and a touch of Six Sigma. Fortunately, however, the ROI’s of the business benefits that can be delivered are quite substantial and can thereby justify obtaining and committing the appropriate resources. Unfortunately though, few railroads, if any, have identified the use of technologists to rethink operations based upon advancing technologies, most specifically wireless.  It seems that there are no senior technologist positions in the railroads that can develop and present a threshold business case to senior management to pursue developing a strategic technology plan in sync with a strategic business plan.

As to the supplier community, there are at best a few that have the wherewithal to put together synced business / technology strategies, albeit somewhat biased undoubtedly. But even those suppliers that may be capable of doing so are reluctant to take on the railroads in a top-down fashion instead of the politically correct but likely ineffective bottom-up approach. In either intrinsic railroad practices or supplier marketing practices, senior railroad management is not getting the message as to what can be done with advancing technologies.

The bottom line is that the railroads don’t need to wait for the business benefits that have been inappropriately associated with the deployment of PTC. The financial justification is there to deploy a team of technologists to structure the business and technology strategies, the implementation of which will handsomely offset the investment required for narrow-band 160-161 MHz and PTC’s 220 MHz. The cost to take full advantage of narrow-banding as well as the somewhat green-field deployment of the 220 MHz bands for PTC by 2016 will be extraordinary. However, the business value that the new-found wireless capacity can deliver is unprecedented, that is if the railroads collectively expand the dimensions of operability.

A Wealth of Wireless – Missing Opportunities

This is the third of three postings to address the Strategic Core Infrastructure that is required to advance railroad operations . . . essentially, the technology that is required to pursue Strategic Railroading. Each posting addresses one of the three core technologies that together comprise the core infrastructure. Whereas the previous two postings addressed INTELLIGENCE (The Mobile Node) and POSITIONING (The Positioning Engine), this posting addresses COMMUNICATIONS.

As recently as 2 years ago, the adage too-much-of-a-good-thing would not have seemed appropriate when discussing wireless technologies that could be used by railroads. But since then, the sky has opened up with the expanding availability of commercial wireless networks and most importantly the opportunity to implement trunking in the railroads’ extensive 160-161 MHz band that is subjected to the FCC’s Refarming Order, a.k.a. narrow-banding.  As to the latter, the efficiency of trunking, which dynamically allocates available channels to users (versus the traditional use of dedicated channels, e.g., one channel per yard crew), in concert with the opportunity for a multiple-fold increase in the number of channels obtainable by narrow-banding provides the railroads with an unprecedented amount of capacity to handle both voice and data in even the most complex metropolitan and mainline operations.

Apparently that wasn’t enough for most Class I technicians.  They wanted more … and more … and so a 220 Mhz band was purchased several years ago that will result in two parallel VHF networks across the industry. The timing was fortuitous it seems, because with the subsequent, and foreseen, PTC mandate that would require a wireless data infrastructure, the 220 Mhz band readily resolved three major challenges for the technicians, albeit with a price tag expected to approach a cool $ Billion. First, the railroad technicians were able to avoid the significant challenge (but a clearly an achievable one with the use of trunking) of reshuffling the channels required for the FCC’s refarming mandate. Second, the railroad’s technicians once again were handed their most desired type of project, i.e., develop the ultimate wireless communication infrastructure whether it is needed or not.  Third, the railroads’ technicians finally had a true reason to cooperate in building an industry-based communications platform. Up until the PTC mandate, the “Roadmap to Interoperability”, as the technicians referred to their efforts to define conformity across the industry, better represented an etch-a-sketch of numerous paths with a roadblock on each since it seemed each major railroad had its individual technical agenda.

There are several key underlying points that are not being considered by Class I technicians or by their management when it comes to the cost-effective deployment of technologies- most importantly wireless data.

  1. It takes so little data to achieve the majority of the business benefits of advanced operations within a railroad, and across the industry. For example, for U.S. freight railroads the periodicity of train speed and position data required to optimize the use of meet/pass planners is no more frequent than every 5 minutes;
  2. PTC does not require extravagant wireless platforms.  This is not traffic control;
  3. Either the 160 Mhz with trunking or the sophisticated 220Mhz platform will handle any railroad’s requirements.
  4. Railroads could be using commercial cellular and/or the Meteorcomm that they bought into NOW to advance key operating advances. There is no reason to wait for either VHF infrastructure to be advanced.

Bottom-line: More can be done with less and it can be achieved NOW.

When it comes to implementing and designing for wireless data, the Class I railroads are not considering the railroad’s bottom line.  What a shame.  Hence, my posting on the use of Technologists in lieu of technicians to build a strategic technology plan in sync with a strategic operating plan, a.k.a. Strategic Railroading.

The Positioning Engine – changing railroad’s core technology

The North American railroads have the opportunity to make a phenomenal paradigm shift in running their operations, both individually and collectively as an industry. However, to date they have failed to recognize the possibilities, yet alone to take a proactive position to break away from traditional railroading and make the transition to strategic railroading, i.e. syncing strategic operations with a strategic technology plan.

The reasons for such an unfortunate lack of progress are actually quite few but nonetheless difficult to overcome with the railroads’ current management teams.  In the simplest terms, the reasons reduce to the lack of a true business perspective relative to the deployment of technologies by railroads and suppliers alike.  This is due to the lack of Technologists that can provide cost-effective technology solutions that support operational changes … instead of the current terror of technicians who believe they are driven to deliver the ultimate system, i.e., technology platforms that only they can design.

The shift to strategic railroading is based upon making substantial changes in a railroad’s core technology infrastructure, i.e., the mixture of communication, intelligence, and positioning technologies.  Such changes will eliminate the constraints placed upon operations by the two traditional technologies that have been in use since the early part of the last century, i.e., track circuits and wireless voice.  Each of the three technologies that comprise the core technology infrastructure will be explored in individual postings with this one addressing the positioning perspective.

I start this perspective by first looking back to the 80’s and 90’s to several interesting, not always successful, pursuits of various positioning concepts. At that point, wireless data was beginning to get some facial hair with End-of-Train (EOT) being the first true application of its use across the industry.  More importantly, or so it seemed at the time given the hype of the GE-Harris combo, a significant attempt was made by several railroads to advance traffic management. Referred to as Advanced Train Control Systems (ATCS), this platform attempted to incorporate a concept for a positioning technology to ascertain which track a train was on when in parallel track operations, as well as another concept for determining the precision of position along the track required for moving block. Fortunately, the industry soon rejected the two ill-founded concepts, i.e., transponders embedded in tens of thousands of track miles, and expensive, on-board gyro platforms infused with convoluted track databases.

Shortly after the demise of ATCS, I was employed by CSX to develop a Positive Train Control (PTC) system for dark territory operation.  A major challenge was to find a solution for parallel track operation without the availability of track circuits to declare block/track occupancy. Luckily, I had the advantage of what not to do given the ATCS failure. The solution I developed, that has since been used in all PTC pursuits by freight railroads in North America, was to monitor switch position for the back office system to “route” the train within the accuracy of GPS once the initial track was known by PTC.  There were significant additional advantages to monitoring switches, i.e., being able to enforce a train should the crew be in danger of violating either the switch’s position or run-through speed.

While routing has been incorporated successfully into PTC functionality, there still remains the issues of accuracy and timeliness of positioning data for the purpose of advancing railroad operations. Specifically, what is missing is the middle ground between what the century-old technologies provide and what the technicians left unmanaged with seemingly unlimited capital funds would provide (as is currently the case).  The former can only provide block ID, and not actual position or speed of a train in signaled territory. In dark territory, not even that level of information is available.  Contrarily, the un-tethered technician will attempt to deliver real time data of both position and speed, even though it clearly isn’t necessary. Such fatuous pursuits by technicians result in expensive wireless infrastructures.

There are two key points here –

1) The advanced traffic management systems being deployed in Europe, ERTMS, are using GSM-R wireless with base stations as close as every 4Km so as to insure no more than a 7second lapse in transmitting critical information to keep the high speed trains moving.  Such an approach can increase the cost of the wireless infrastructure by a factor of 10 compared to what is required when dealing with slower freight trains.

2) A number of years ago, I contracted an Operations Research (applied mathematics) consultancy to determine the pragmatic requirement for reporting train position and speed in a fashion capable of supporting meet/pass planners.  This analysis showed the optimum frequency of reporting such data ranges from reports every 5 – 15 minutes, depending upon the level of traffic. This is not real -time data, but rather in-time data; the difference is critical when deploying wireless data infrastructure as well as the design of the back office systems that use the data. With in-time data, dispatchers can foresee traffic conflicts and dynamically re-plan train movements; a concept I refer to as Proactive Traffic Management (PTM) and introduced to the industry 6 years ago.

In addition to the use of wireless to report train position and speed, there is a variety of positioning data that are being provided for singular activities, including OS’s, AEI and wayside detection reports. Hence, there is an opportunity to merge these data into a single data base/server that can be used to service all requiring applications with improved timeliness and quality of data. Such capability would be the function of a positioning engine that is a type of Kalman filter that maintains a statistically rational tracking of trains based upon a continuously updated data base. I know of only one railroad that has built, reportedly, such a strategic component within their IT infrastructure.

Revving up a positioning engine requires a succession of steps; I can envision the following: 1. Construct a locomotive tracking platform by integrating AEI reports with recurring wireless data transmissions from the locomotives; 2. Incorporate a locomotive-to-train converter to form a train tracking platform; 3. Introduce train OS’s from CAD as well as the status of critical manual switches (e.g., dark territory operation) and layer on train routing logic. Voila! You have an IT server that is available for all purposes including the management of traffic, crew, track gangs, and locomotives, as well as PTC. This is an enterprise solution that, most interestingly, can be provided outboard and independently of the CAD – CTC infrastructure. This is a solution that can stand easily on its own merits without the organizational, technical, and functional barriers that are normally confronted when taking on changes to a railroad’s operations practices or its stoic IT infrastructure.

I am not suggesting that the above 3-step process to obtaining a positioning engine is particularly easy. But, it needs to be done now given that the PTC mandate has resulted in the railroads finally working together to develop a wireless strategy, albeit an overly complex and unnecessarily expensive one. Actually there are really two levels of positioning engines required. The first level is required by each railroad, and for a railroad not to do so affects only that particular railroad. The second level of positioning engine is for the industry.  What I refer to as industry intra-operability is a strategic platform that is required to improve the advancement of all railroads. It is the ability to know where assets are regardless of which railroad they are operating. The advantages can be significant, including fueling, maintenance, and traffic management. Industry intra-operability will addressed in a separate posting.

Lastly, positioning data is only as good as the reliability and accuracy of the reference points.  This means that the railroads require substantial GIS systems.  Fortunately, that seems to be the case for each railroad individually, but not necessarily from an industry standpoint.  Furthermore, the GIS platform within a railroad needs to be enterprise level in concert with the positioning engine. That is, the E-GIS platform needs to be common to all applications requiring such data, and the data collection and modifications requirements need to be specifically assigned to individual departments with no overlap. Simply stated, there can only be one source for any given data element … or … a version of the positioning gateway is required to blend multiple sources of the same data into one usable source. This is a critical design point for safety systems such as PTC.

Teddy Bear – “Digital Authorities are Vital”

I thought I had covered all of the important Teddy Bears in my prior posts as to the issue of vitality in railroad operations, but I forgot about one.  Several weeks ago at a PTC conference where I was the luncheon speaker, I addressed a number of topics. Arguably, the most important two points I discussed were:

  1. PTC does not deliver business benefits; and
  2. The fervent pursuit of PTC by the railroads to meet the mandate requirement is actually preventing the pursuit of opportunities to advance railroad operations. The reason for the latter is explained by the fact that most railroads lack both the Strategic Railroading perspective and the necessary resources, Technologists, to develop and deploy such a perspective.

At the conclusion of the presentation, the audience was asked if they had questions or comments. The first question was as to whether or not I thought Digital Authorities are vital. Indeed, there are many that believe them to be … with the sequential logic being that the wireless communication system required would have to be vital as well. In fact, the digital authorities are no more vital than the aspects on the signal post or the authorities that are provided via voice radio in non-signaled territory. All of these are only the display of the results of the vital process that was in effect to generate the authority.

With that said, it doesn’t mean that the transmission of authorities need not be accurate and reliable. For voice authorities, those attributes are provided by the crew member repeating the authority back to the dispatcher, and then starting over if there is any disagreement.  For DA’s, the accuracy and reliability factors are provided by a mathematical algorithm that performs error detection and correction on bits. And for signals, the issue is whether or not the light source is operable.  In all cases, should the transmission fail, then the crew knows what to do.  They revert to the threshold level of vitality referred to as the Book of Operating Rules.

The bottom line is that DA’s are not vital.
Therefore neither the transmission process nor the equipment need to be either.

Teddy Bear – “PTC is Vital”

“PTC is Vital.”

It was a slow process, but perseverance has paid off.  This Teddy Bear as to PTC being vital has only the faintest shade of presence. Most individuals that have anything to do with PTC now understand that PTC is NOT vital. But, just in case, here’s the story.

It was in the earliest meetings of the PTC- Railroad Safety Advisory Committee (RSAC) process a decade or so ago that there was a great deal of confusion and misunderstanding as to what PTC was and what it did.  Indeed, the first primary task for the RSAC members, that included FRA, rail management, labor representatives, and suppliers, was to define the “core objectives” of PTC.  Within several RSAC sessions, the core objectives were determined to be 3-fold:

i.e.,

keep trains from hitting trains, keep trains from over-speeding, and keep trains from endangering work gangs.

An additional objective of protecting against grade crossings was introduced but readily dropped due to the physics of train movements and the ownership of the property. That is, to stop a freight train in time to prevent an accident involving a grade crossing situation, e.g., failure of gate to lower, would require such a long time for the gate to be lowered that the public would be more likely to run around the gates.  Additionally, the railroads in general own the property, and it is the public’s responsibility to watch out for trains – not the other way around.

Lastly, a fourth core objective has been added with the PTC mandate, i.e. prevent a train from moving through a misaligned switch. Once initial three core objectives of PTC were established, the next challenge for RSAC was to obtain a status of PTC efforts across the industry.It was at this time that I had the first of a number of opportunities to present Communications Based Traffic Management (CBTM), the PTC effort for which I was the architect at CSX.

CBTM was the first overlay approach to be developed, and as such it established the underlying basis for the current PTC pursuits by the freight railroads to meet the mandate. It also was the first overlay PTC project that had to confront the point of vitality. My first presentation to the RSAC members stating that CBTM was not vital began a long education process to get past various perspectives of vitality that existed at that time, as follows: First, key members of the FRA believed everything was vital in the overly-zealous spirit of zero tolerance for risk. Second, Labor thought by not being vital meant that the vitalities (lives) of the crew members were not being protected, as in “Does PTC apply the brakes or not?” Lastly, traditional signaling personnel, whether railroads or suppliers, view vitality as the state of failing safely, as in track circuits, relays, and control point logic. Hence, their logic proceeds that anything associated with that infrastructure needs to be vital as well thereby requiring extensive engineering, verification & validation (V&V), and duplication of hardware.

My challenge was to describe vitality in a fashion that would be acceptable to all.  The solution was to introduce an operational / functional perspective in lieu of the regulatory, technical, or humanistic ones. Simply stated, I defined vitality as the means by which movement authorities are generated so as to maintain the integrity of train movements. Hence, with such a definition, it follows that PTC is not vital since it has nothing to do with the generation, or even transmission, of movement authorities. (BTW, it is for this reason that PTC can not improve traffic density as discussed in another Teddy Bear Posting: PTC Business Benefits.) As the result of this effort, one issue of my quarterly journal, Full Spectrum, was so dedicated and titled Vital’s Vanity. As a closing point, it is appropriate to introduce here what is so often overlooked by people when they talk about vitality.  That is, there is a threshold of vitality that exists whether the territory is signaled, non-signaled, and does or does not have PTC or other enforcement systems. I am referring to the Book of Rules.

Follow StratRail on Twitter
Strategic Railroading™
Given recent tech advances there is now an unprecedented opportunity to advance railroad operations and the integration of high speed rail with freight. Real-time traffic management and communication is possible without significant development and deployment costs, but it will take a technology strategy working hand-in-hand with an operational strategy, it will take Strategic Railroading.™
Full Spectrum - Quarterly Journal

Full Spectrum is a quarterly railroading journal authored by Mr. Ron Lindsey. The majority of executives in the US railroad industry, including top members of the FRA and the major railroads, have subscribed to Full Spectrum for the past fifteen years.

Full Spectrum subscriptions are available by contacting Ron via email. If you are concerned with staying abreast of the newest advances in rail technology or operations strategy, it is highly recommended you subscribe in order to maintain your competitive advantage.

Back issues are on sale here.

Purchase Full Spectrum Issues
Your cart is empty
Visit The Shop